基于自相关函数和递归神经网络的脑电图缺失发作检测

Yifei Yu, Haoran Qin, Yuanxiang Li, Zaifen Gao, Z. Gai
{"title":"基于自相关函数和递归神经网络的脑电图缺失发作检测","authors":"Yifei Yu, Haoran Qin, Yuanxiang Li, Zaifen Gao, Z. Gai","doi":"10.1109/SSCI44817.2019.9002853","DOIUrl":null,"url":null,"abstract":"Epilepsy patients experience challenges in daily life, and epilepsy seizures might cause injuries or endanger the life of the patients or others. The electroencephalogram (EEG) signals, recorded by a machine or device, are often used to analyze the brain electrical activity, which is noninvasive. Locating the seizure period in EEG recordings is usually difficult and time consuming for doctors. Therefore, automatic detection of seizures is necessary. In this paper, we use the autocorrelation function to extract the EEG features, and propose a method based on Recurrent Neural Network to detect the seizure period of the EEG signal, which combines the gated recurrent unit and a 1-D convolutional embedding head. We use the clinical EEG recording of 15 patients to simulate the results of our proposed method. The experimental results demonstrate that our method achieves an excellent performance with 99.6% detection accuracy for Absence Seizure, which can greatly reduce the workload of doctors in clinical diagnosis.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"26 1","pages":"3059-3064"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"EEG Absence Seizure Detection with Autocorrelation Function and Recurrent Neural Network\",\"authors\":\"Yifei Yu, Haoran Qin, Yuanxiang Li, Zaifen Gao, Z. Gai\",\"doi\":\"10.1109/SSCI44817.2019.9002853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epilepsy patients experience challenges in daily life, and epilepsy seizures might cause injuries or endanger the life of the patients or others. The electroencephalogram (EEG) signals, recorded by a machine or device, are often used to analyze the brain electrical activity, which is noninvasive. Locating the seizure period in EEG recordings is usually difficult and time consuming for doctors. Therefore, automatic detection of seizures is necessary. In this paper, we use the autocorrelation function to extract the EEG features, and propose a method based on Recurrent Neural Network to detect the seizure period of the EEG signal, which combines the gated recurrent unit and a 1-D convolutional embedding head. We use the clinical EEG recording of 15 patients to simulate the results of our proposed method. The experimental results demonstrate that our method achieves an excellent performance with 99.6% detection accuracy for Absence Seizure, which can greatly reduce the workload of doctors in clinical diagnosis.\",\"PeriodicalId\":6729,\"journal\":{\"name\":\"2019 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"26 1\",\"pages\":\"3059-3064\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI44817.2019.9002853\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9002853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

癫痫患者在日常生活中面临挑战,癫痫发作可能会造成伤害或危及患者或他人的生命。由机器或设备记录的脑电图(EEG)信号通常用于分析脑电活动,这是无创的。在脑电图记录中定位癫痫发作期对医生来说通常是困难且耗时的。因此,自动检测癫痫发作是必要的。本文利用自相关函数提取脑电信号特征,提出了一种基于递归神经网络的脑电信号发作周期检测方法,该方法将门控递归单元与一维卷积嵌入头相结合。我们使用15例患者的临床脑电图记录来模拟我们提出的方法的结果。实验结果表明,该方法对缺勤发作的检测准确率达到了99.6%,大大减少了医生在临床诊断中的工作量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EEG Absence Seizure Detection with Autocorrelation Function and Recurrent Neural Network
Epilepsy patients experience challenges in daily life, and epilepsy seizures might cause injuries or endanger the life of the patients or others. The electroencephalogram (EEG) signals, recorded by a machine or device, are often used to analyze the brain electrical activity, which is noninvasive. Locating the seizure period in EEG recordings is usually difficult and time consuming for doctors. Therefore, automatic detection of seizures is necessary. In this paper, we use the autocorrelation function to extract the EEG features, and propose a method based on Recurrent Neural Network to detect the seizure period of the EEG signal, which combines the gated recurrent unit and a 1-D convolutional embedding head. We use the clinical EEG recording of 15 patients to simulate the results of our proposed method. The experimental results demonstrate that our method achieves an excellent performance with 99.6% detection accuracy for Absence Seizure, which can greatly reduce the workload of doctors in clinical diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planning for millions of NPCs in Real-Time Improving Diversity in Concept Drift Ensembles Self-Organizing Transformations for Automatic Feature Engineering Corrosion-like Defect Severity Estimation in Pipelines Using Convolutional Neural Networks Heuristic Hybridization for CaRSP, a multilevel decision problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1