Ratikanta Maiti, Rodriguez Hgm, A. Kumari, Díaz Jcg
{"title":"墨西哥东北部Tamulipan thorn灌丛30种木本乔木的分枝格局和分枝密度研究","authors":"Ratikanta Maiti, Rodriguez Hgm, A. Kumari, Díaz Jcg","doi":"10.4172/2168-9776.1000160","DOIUrl":null,"url":null,"abstract":"In the context of the \necological \nperspectives, there is growing attention in the modelling of the morphological structure of the plants for developing the model of the functional processes of plants. The branching pattern functions as solar panel in the capture of solar radiation for the production of biomass and timber. The present study undertaken with the objective of determining the density of branching and types of branching of 30 tree species (trees and shrubs of Tamaulipan thorn scrub such; Helietta parvifolia, Sargentia gregii, Guaiacum angustifolium, Ebenopsis ebano, Harvadia pallens, Condalia hoockeri, \nZanthoxylum fagara \n, Cordia boissieri, Acacia berlandieri, Diospyros texana, Celtis pallida, Forestiera angustifolia, Diospyros palmeri, Parkinsonia texana, Acacia farnesiana, Sideroxylon celastrina, Caesalpinia mexicana, Karwinskia humboldtiana, Croton suaveolens, Amyris texana, Leucaena leucocephala, Ehretia anacua, Gymnosperma glutinosum, Celtis laevigata, Acacia rigidula, Acacia shaffneri, Eysenhardtia polystachya, Prosopis laevigata, Bernardia myricifolia and Leucophyllum frutescens located at the experimental field of Forest Science Faculty of Autonoma de Nuevo en Linares, N.L., Mexico has shown a large variability in the density and branching patterns. The types of branching observed are; monopodial, pseudomonopodial, and sympodial. The \nbranching \ndensity observed through animation photography in the field has revealed the presence of three types branching density i.e., high, medium and low density. There existed differences in height, biomass, basal trunk, the angle of the primary and secondary branches. With respect to branching density, a higher number of species were high density (15 species), followed by low density (9) and medium density (5 species). The architecture of the tree is the result of the activity of the apical and axial meristems. This model is a strategy for occupying the space and capture of solar radiation.","PeriodicalId":35920,"journal":{"name":"林业科学研究","volume":"47 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Perspectives of Branching Pattern and Branching Density in 30 WoodyTrees and Shrubs in Tamulipan Thornscrub, Northeast of Mexico\",\"authors\":\"Ratikanta Maiti, Rodriguez Hgm, A. Kumari, Díaz Jcg\",\"doi\":\"10.4172/2168-9776.1000160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of the \\necological \\nperspectives, there is growing attention in the modelling of the morphological structure of the plants for developing the model of the functional processes of plants. The branching pattern functions as solar panel in the capture of solar radiation for the production of biomass and timber. The present study undertaken with the objective of determining the density of branching and types of branching of 30 tree species (trees and shrubs of Tamaulipan thorn scrub such; Helietta parvifolia, Sargentia gregii, Guaiacum angustifolium, Ebenopsis ebano, Harvadia pallens, Condalia hoockeri, \\nZanthoxylum fagara \\n, Cordia boissieri, Acacia berlandieri, Diospyros texana, Celtis pallida, Forestiera angustifolia, Diospyros palmeri, Parkinsonia texana, Acacia farnesiana, Sideroxylon celastrina, Caesalpinia mexicana, Karwinskia humboldtiana, Croton suaveolens, Amyris texana, Leucaena leucocephala, Ehretia anacua, Gymnosperma glutinosum, Celtis laevigata, Acacia rigidula, Acacia shaffneri, Eysenhardtia polystachya, Prosopis laevigata, Bernardia myricifolia and Leucophyllum frutescens located at the experimental field of Forest Science Faculty of Autonoma de Nuevo en Linares, N.L., Mexico has shown a large variability in the density and branching patterns. The types of branching observed are; monopodial, pseudomonopodial, and sympodial. The \\nbranching \\ndensity observed through animation photography in the field has revealed the presence of three types branching density i.e., high, medium and low density. There existed differences in height, biomass, basal trunk, the angle of the primary and secondary branches. With respect to branching density, a higher number of species were high density (15 species), followed by low density (9) and medium density (5 species). The architecture of the tree is the result of the activity of the apical and axial meristems. This model is a strategy for occupying the space and capture of solar radiation.\",\"PeriodicalId\":35920,\"journal\":{\"name\":\"林业科学研究\",\"volume\":\"47 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"林业科学研究\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.4172/2168-9776.1000160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"林业科学研究","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4172/2168-9776.1000160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Perspectives of Branching Pattern and Branching Density in 30 WoodyTrees and Shrubs in Tamulipan Thornscrub, Northeast of Mexico
In the context of the
ecological
perspectives, there is growing attention in the modelling of the morphological structure of the plants for developing the model of the functional processes of plants. The branching pattern functions as solar panel in the capture of solar radiation for the production of biomass and timber. The present study undertaken with the objective of determining the density of branching and types of branching of 30 tree species (trees and shrubs of Tamaulipan thorn scrub such; Helietta parvifolia, Sargentia gregii, Guaiacum angustifolium, Ebenopsis ebano, Harvadia pallens, Condalia hoockeri,
Zanthoxylum fagara
, Cordia boissieri, Acacia berlandieri, Diospyros texana, Celtis pallida, Forestiera angustifolia, Diospyros palmeri, Parkinsonia texana, Acacia farnesiana, Sideroxylon celastrina, Caesalpinia mexicana, Karwinskia humboldtiana, Croton suaveolens, Amyris texana, Leucaena leucocephala, Ehretia anacua, Gymnosperma glutinosum, Celtis laevigata, Acacia rigidula, Acacia shaffneri, Eysenhardtia polystachya, Prosopis laevigata, Bernardia myricifolia and Leucophyllum frutescens located at the experimental field of Forest Science Faculty of Autonoma de Nuevo en Linares, N.L., Mexico has shown a large variability in the density and branching patterns. The types of branching observed are; monopodial, pseudomonopodial, and sympodial. The
branching
density observed through animation photography in the field has revealed the presence of three types branching density i.e., high, medium and low density. There existed differences in height, biomass, basal trunk, the angle of the primary and secondary branches. With respect to branching density, a higher number of species were high density (15 species), followed by low density (9) and medium density (5 species). The architecture of the tree is the result of the activity of the apical and axial meristems. This model is a strategy for occupying the space and capture of solar radiation.
期刊介绍:
Forestry Research is a comprehensive academic journal of forestry science organized by the Chinese Academy of Forestry. The main task is to reflect the latest research results, academic papers and research reports, scientific and technological developments and information on forestry science mainly organized by the Chinese Academy of Forestry, to promote academic exchanges at home and abroad, to carry out academic discussions, to flourish forestry science, and to better serve China's forestry construction.
The main contents are: forest seeds, seedling afforestation, forest plants, forest genetic breeding, tree physiology and biochemistry, forest insects, resource insects, forest pathology, forest microorganisms, forest birds and animals, forest soil, forest ecology, forest management, forest manager, forestry remote sensing, forestry biotechnology and other new technologies, new methods, and to increase the development strategy of forestry, the trend of development of disciplines, technology policies and strategies, etc., and to increase the forestry development strategy, the trend of development of disciplines, technology policies and strategies. It is suitable for scientists and technicians of forestry and related disciplines, teachers and students of colleges and universities, leaders and managers, and grassroots forestry workers.