A. Otoom, Doaa Al-Shdaifat, M. Hammad, E. Abdallah
{"title":"软件bug的严重程度预测","authors":"A. Otoom, Doaa Al-Shdaifat, M. Hammad, E. Abdallah","doi":"10.1109/IACS.2016.7476092","DOIUrl":null,"url":null,"abstract":"We target the problem of identifying the severity of a bug report. Our main aim is to develop an intelligent system that is capable of predicting the severity of a newly submitted bug report through a bug tracking system. For this purpose, we build a dataset consisting of 59 features characterizing 163 instances that belong to two classes: severe and non-severe. We combine the proposed feature set with strong classification algorithms to assist in predicting the severity of bugs. Moreover, the proposed algorithms are integrated within a boosting algorithm for an enhanced performance. Our results show that the proposed technique has proved successful with a classification performance accuracy of more than 76% with the AdaBoost algorithm and cross validation test. Moreover, boosting has been effective in enhancing the performance of its base classifiers with improvements of up to 4.9%.","PeriodicalId":6579,"journal":{"name":"2016 7th International Conference on Information and Communication Systems (ICICS)","volume":"PC-22 1","pages":"92-95"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Severity prediction of software bugs\",\"authors\":\"A. Otoom, Doaa Al-Shdaifat, M. Hammad, E. Abdallah\",\"doi\":\"10.1109/IACS.2016.7476092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We target the problem of identifying the severity of a bug report. Our main aim is to develop an intelligent system that is capable of predicting the severity of a newly submitted bug report through a bug tracking system. For this purpose, we build a dataset consisting of 59 features characterizing 163 instances that belong to two classes: severe and non-severe. We combine the proposed feature set with strong classification algorithms to assist in predicting the severity of bugs. Moreover, the proposed algorithms are integrated within a boosting algorithm for an enhanced performance. Our results show that the proposed technique has proved successful with a classification performance accuracy of more than 76% with the AdaBoost algorithm and cross validation test. Moreover, boosting has been effective in enhancing the performance of its base classifiers with improvements of up to 4.9%.\",\"PeriodicalId\":6579,\"journal\":{\"name\":\"2016 7th International Conference on Information and Communication Systems (ICICS)\",\"volume\":\"PC-22 1\",\"pages\":\"92-95\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 7th International Conference on Information and Communication Systems (ICICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IACS.2016.7476092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 7th International Conference on Information and Communication Systems (ICICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IACS.2016.7476092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We target the problem of identifying the severity of a bug report. Our main aim is to develop an intelligent system that is capable of predicting the severity of a newly submitted bug report through a bug tracking system. For this purpose, we build a dataset consisting of 59 features characterizing 163 instances that belong to two classes: severe and non-severe. We combine the proposed feature set with strong classification algorithms to assist in predicting the severity of bugs. Moreover, the proposed algorithms are integrated within a boosting algorithm for an enhanced performance. Our results show that the proposed technique has proved successful with a classification performance accuracy of more than 76% with the AdaBoost algorithm and cross validation test. Moreover, boosting has been effective in enhancing the performance of its base classifiers with improvements of up to 4.9%.