自动驾驶汽车的对抗性攻击与防御技术综述

IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS Applied Computer Systems Pub Date : 2021-12-01 DOI:10.2478/acss-2021-0012
K.T.Yasas Mahima, Mohamed Ayoob, Guhanathan Poravi
{"title":"自动驾驶汽车的对抗性攻击与防御技术综述","authors":"K.T.Yasas Mahima, Mohamed Ayoob, Guhanathan Poravi","doi":"10.2478/acss-2021-0012","DOIUrl":null,"url":null,"abstract":"Abstract In recent years, various domains have been influenced by the rapid growth of machine learning. Autonomous driving is an area that has tremendously developed in parallel with the advancement of machine learning. In autonomous vehicles, various machine learning components are used such as traffic lights recognition, traffic sign recognition, limiting speed and pathfinding. For most of these components, computer vision technologies with deep learning such as object detection, semantic segmentation and image classification are used. However, these machine learning models are vulnerable to targeted tensor perturbations called adversarial attacks, which limit the performance of the applications. Therefore, implementing defense models against adversarial attacks has become an increasingly critical research area. The paper aims at summarising the latest adversarial attacks and defense models introduced in the field of autonomous driving with machine learning technologies up until mid-2021.","PeriodicalId":41960,"journal":{"name":"Applied Computer Systems","volume":"28 1","pages":"96 - 106"},"PeriodicalIF":0.5000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Adversarial Attacks and Defense Technologies on Autonomous Vehicles: A Review\",\"authors\":\"K.T.Yasas Mahima, Mohamed Ayoob, Guhanathan Poravi\",\"doi\":\"10.2478/acss-2021-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In recent years, various domains have been influenced by the rapid growth of machine learning. Autonomous driving is an area that has tremendously developed in parallel with the advancement of machine learning. In autonomous vehicles, various machine learning components are used such as traffic lights recognition, traffic sign recognition, limiting speed and pathfinding. For most of these components, computer vision technologies with deep learning such as object detection, semantic segmentation and image classification are used. However, these machine learning models are vulnerable to targeted tensor perturbations called adversarial attacks, which limit the performance of the applications. Therefore, implementing defense models against adversarial attacks has become an increasingly critical research area. The paper aims at summarising the latest adversarial attacks and defense models introduced in the field of autonomous driving with machine learning technologies up until mid-2021.\",\"PeriodicalId\":41960,\"journal\":{\"name\":\"Applied Computer Systems\",\"volume\":\"28 1\",\"pages\":\"96 - 106\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/acss-2021-0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acss-2021-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 4

摘要

近年来,各个领域都受到机器学习快速发展的影响。自动驾驶是一个与机器学习同步发展的领域。在自动驾驶汽车中,使用了各种机器学习组件,如交通信号灯识别、交通标志识别、限速和寻路。对于大多数这些组件,使用了具有深度学习的计算机视觉技术,如对象检测,语义分割和图像分类。然而,这些机器学习模型容易受到被称为对抗性攻击的目标张量扰动的影响,这限制了应用程序的性能。因此,实现针对对抗性攻击的防御模型已成为一个日益重要的研究领域。本文旨在总结截至2021年中期,机器学习技术在自动驾驶领域引入的最新对抗性攻击和防御模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adversarial Attacks and Defense Technologies on Autonomous Vehicles: A Review
Abstract In recent years, various domains have been influenced by the rapid growth of machine learning. Autonomous driving is an area that has tremendously developed in parallel with the advancement of machine learning. In autonomous vehicles, various machine learning components are used such as traffic lights recognition, traffic sign recognition, limiting speed and pathfinding. For most of these components, computer vision technologies with deep learning such as object detection, semantic segmentation and image classification are used. However, these machine learning models are vulnerable to targeted tensor perturbations called adversarial attacks, which limit the performance of the applications. Therefore, implementing defense models against adversarial attacks has become an increasingly critical research area. The paper aims at summarising the latest adversarial attacks and defense models introduced in the field of autonomous driving with machine learning technologies up until mid-2021.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computer Systems
Applied Computer Systems COMPUTER SCIENCE, THEORY & METHODS-
自引率
10.00%
发文量
9
审稿时长
30 weeks
期刊最新文献
Multimodal Biometric System Based on the Fusion in Score of Fingerprint and Online Handwritten Signature Multichannel Approach for Sentiment Analysis Using Stack of Neural Network with Lexicon Based Padding and Attention Mechanism BRS-based Model for the Specification of Multi-view Point Ontology Empirical Analysis of Supervised and Unsupervised Machine Learning Algorithms with Aspect-Based Sentiment Analysis Approximate Nearest Neighbour-based Index Tree: A Case Study for Instrumental Music Search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1