番椒通过抗氧化和抗炎机制改善apap诱导的肝毒性

IF 0.5 Q4 MULTIDISCIPLINARY SCIENCES Journal of Mathematical and Fundamental Sciences Pub Date : 2022-06-21 DOI:10.5614/j.math.fund.sci.2022.54.1.6
I. Lister, C. Ginting, Ermi Girsang, A. Amansyah, L. Chiuman, N. L. W. E. Yanti, W. Widodo, D. T. Yusepany, R. Rizal, W. Widowati
{"title":"番椒通过抗氧化和抗炎机制改善apap诱导的肝毒性","authors":"I. Lister, C. Ginting, Ermi Girsang, A. Amansyah, L. Chiuman, N. L. W. E. Yanti, W. Widodo, D. T. Yusepany, R. Rizal, W. Widowati","doi":"10.5614/j.math.fund.sci.2022.54.1.6","DOIUrl":null,"url":null,"abstract":"Cirrhosis is a serious hepatic disease that occurs worldwide and is caused by progressive fibrosis in the liver. Free radicals are the major cause of reactive oxygen species (ROS) generation, which affects the balance of the liver metabolism. Piper crocatum, commonly called red betel, is widely used in ethnomedicine because it has biological capabilities, including antioxidant and anti-inflammatory properties. The present study was undertaken to examine the possibility of hepaprotective activity of red betel extract on acetaminophen (APAP)-induced HepG2 cells as the cirrhosis in vitro model. Assessment of red betel extract (RBE) was performed using the colorimetric method for the quantification of LDH, AST, and ALT. As preliminary study, a cytotoxicity  assay was performed at various RBE concentrations (100.00; 50.00; 25.00; 12.50; 6.25; 3.13 μg/ml) using an MTS assay to decide the safe concentration based on cell viability. The RBE treatment did not affect cell viability, even at a high concentration (100 µg/ml, p > 0.05). RBE at concentrations 25 and 100 µg/ml successfully reduced LDH, AST, and ALT activities in the hepatotoxic model in a dose-dependent manner. In the APAP-induced hepatotoxicity model, RBE positively indicated a hepatoprotective effect and cell amelioration by a decrease in hepatotoxic markers.","PeriodicalId":16255,"journal":{"name":"Journal of Mathematical and Fundamental Sciences","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Piper crocatum Ameliorates APAP-Induced Hepatotoxicity through Antioxidant and Anti-Inflammatory Mechanisms\",\"authors\":\"I. Lister, C. Ginting, Ermi Girsang, A. Amansyah, L. Chiuman, N. L. W. E. Yanti, W. Widodo, D. T. Yusepany, R. Rizal, W. Widowati\",\"doi\":\"10.5614/j.math.fund.sci.2022.54.1.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cirrhosis is a serious hepatic disease that occurs worldwide and is caused by progressive fibrosis in the liver. Free radicals are the major cause of reactive oxygen species (ROS) generation, which affects the balance of the liver metabolism. Piper crocatum, commonly called red betel, is widely used in ethnomedicine because it has biological capabilities, including antioxidant and anti-inflammatory properties. The present study was undertaken to examine the possibility of hepaprotective activity of red betel extract on acetaminophen (APAP)-induced HepG2 cells as the cirrhosis in vitro model. Assessment of red betel extract (RBE) was performed using the colorimetric method for the quantification of LDH, AST, and ALT. As preliminary study, a cytotoxicity  assay was performed at various RBE concentrations (100.00; 50.00; 25.00; 12.50; 6.25; 3.13 μg/ml) using an MTS assay to decide the safe concentration based on cell viability. The RBE treatment did not affect cell viability, even at a high concentration (100 µg/ml, p > 0.05). RBE at concentrations 25 and 100 µg/ml successfully reduced LDH, AST, and ALT activities in the hepatotoxic model in a dose-dependent manner. In the APAP-induced hepatotoxicity model, RBE positively indicated a hepatoprotective effect and cell amelioration by a decrease in hepatotoxic markers.\",\"PeriodicalId\":16255,\"journal\":{\"name\":\"Journal of Mathematical and Fundamental Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical and Fundamental Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/j.math.fund.sci.2022.54.1.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical and Fundamental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/j.math.fund.sci.2022.54.1.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

肝硬化是一种严重的肝脏疾病,发生在世界各地,是由肝脏进行性纤维化引起的。自由基是活性氧(reactive oxygen species, ROS)产生的主要原因,影响肝脏代谢的平衡。藏红花,俗称红槟榔,因其具有抗氧化和抗炎等生物学特性而被广泛用于民族医学。本研究旨在探讨红槟榔提取物对对乙酰氨基酚(APAP)诱导的肝硬化HepG2细胞的肝保护作用。采用比色法定量测定LDH、AST和ALT,对红槟榔提取物(RBE)进行评估。作为初步研究,在不同浓度的RBE (100.00;50.00;25.00;12.50;6.25;3.13 μg/ml),采用MTS法根据细胞活力确定安全浓度。RBE处理即使在高浓度(100µg/ml, p > 0.05)下也不影响细胞活力。浓度为25和100µg/ml的RBE成功地降低了肝毒性模型中LDH、AST和ALT的活性,并呈剂量依赖性。在apap诱导的肝毒性模型中,RBE通过降低肝毒性标志物积极显示出肝保护作用和细胞改善作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Piper crocatum Ameliorates APAP-Induced Hepatotoxicity through Antioxidant and Anti-Inflammatory Mechanisms
Cirrhosis is a serious hepatic disease that occurs worldwide and is caused by progressive fibrosis in the liver. Free radicals are the major cause of reactive oxygen species (ROS) generation, which affects the balance of the liver metabolism. Piper crocatum, commonly called red betel, is widely used in ethnomedicine because it has biological capabilities, including antioxidant and anti-inflammatory properties. The present study was undertaken to examine the possibility of hepaprotective activity of red betel extract on acetaminophen (APAP)-induced HepG2 cells as the cirrhosis in vitro model. Assessment of red betel extract (RBE) was performed using the colorimetric method for the quantification of LDH, AST, and ALT. As preliminary study, a cytotoxicity  assay was performed at various RBE concentrations (100.00; 50.00; 25.00; 12.50; 6.25; 3.13 μg/ml) using an MTS assay to decide the safe concentration based on cell viability. The RBE treatment did not affect cell viability, even at a high concentration (100 µg/ml, p > 0.05). RBE at concentrations 25 and 100 µg/ml successfully reduced LDH, AST, and ALT activities in the hepatotoxic model in a dose-dependent manner. In the APAP-induced hepatotoxicity model, RBE positively indicated a hepatoprotective effect and cell amelioration by a decrease in hepatotoxic markers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
24 weeks
期刊介绍: Journal of Mathematical and Fundamental Sciences welcomes full research articles in the area of Mathematics and Natural Sciences from the following subject areas: Astronomy, Chemistry, Earth Sciences (Geodesy, Geology, Geophysics, Oceanography, Meteorology), Life Sciences (Agriculture, Biochemistry, Biology, Health Sciences, Medical Sciences, Pharmacy), Mathematics, Physics, and Statistics. New submissions of mathematics articles starting in January 2020 are required to focus on applied mathematics with real relevance to the field of natural sciences. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.
期刊最新文献
Simulation of Ultra-Short Laser Pulses Propagation and Ionization in Dual-Gas-Cells to Enhance the Quasi-Phase Matching of Harmonics Generation in Plasmas Structural and Photoluminescence Properties of Ca2+-Substituted Self-Activated Photoluminescence Material of Na2TiSiO5 Geochemistry of I-type Volcanic Arc Granitoid From Tanggamus Regency, Southern Sumatra Bioinformatic Analysis Strategy in Restriction Enzyme Selection for Indonesian Panulirus homarus Identification by PCR-RFLP Sedimentary Facies, Palynology, and Organic Geochemistry of Eocene Kalumpang Formation in Lariang and Karama Areas, West Sulawesi, Indonesia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1