{"title":"梧桐提取物合成氧化锌纳米颗粒对糖尿病大鼠生化变化的影响","authors":"Abubakar A.L, Umar H, Yunusa R.D., Alhaji M.M., Abdullahi A.A., Usaini M.U.","doi":"10.36647/ijsem/09.10.a017","DOIUrl":null,"url":null,"abstract":"Green synthesis of nanoparticles known as the synthesis of nanoparticles using biosynthetic methods involving naturally reducing agents such as polysaccharides, biological microorganism such as bacteria and fungus or plants extract. The synthesis of nanoparticles by the use of biological methods have reached a colossal signification above physical and chemical procedures, this is due to the use of innocuous, biocompatible, and ecologically-sound substrates and remarkably uncomplicated synthetic processes at encompassing conditions. In this research, the synthesis, characterization and the determination of the antibacterial activity of Zinc oxide Nanoparticles (ZnO NPs) was ascertained using stem bark extract of Ficus thonningii (Blume) as a stabilizing agent. However, the anti-diabetic activity and some biochemical changes caused by the synthesized ZnO NPs on alloxan-induced diabetic Wistar Rats were also determined. ZnO NPs were synthesized using biological method at different concentrations of ZnO solution (1mM, 2mM, 3mM and 4mM), these NPs were characterized using UV-visible spectroscopy, FTIR and SEM. Wistar rats weight 185 ± 5g were grouped into nine (9) groups (A, B, C, D, E, F, G, and I). Group A served as normal control which was given only feed and water, group B, C, D and E, were induce and treated with 1mM, 2mM, 3mM and 4mM ZnONPs respectively, then F and G were induced and treated with aqueous extract and ethanolic extract while H was induced and treated with Glibenclamide (standard drug for diabetes) by gavage method and finally I was induced and untreated which served as diabetic control. The results showed that ZnO NPs were synthesized with the indication of the change in colour from yellow to dark brown colour. The UV-visible spectroscopy was taken at range between 200nm to 700nm which displayed different peaks at the range of 209nm to 383nm. However, the FTIR showed the existence of various functional groups such as C=C stretch, C≡C stretch and Alcohol OH stretch representing the bioactive compounds such as phenol, amine and many others. The Nanoparticles were analyzed with SEM to examine the morphology of the Nanoparticles. The diabetic induced rats revealed significant decrease in fasting blood glucose after treatment compared with the diabetic untreated rats, the doses were effective when compared with Glibenclamide treated rats. The levels of serum Alkaline phosphatase, Alanine Amino transferase, Albumin, Globulin, Bilirubin, Total Protein, Urea, Creatinine and Electrolytes concentrations displayed no significant increase relative to diabetic control (p < 0.05; n ≥ 5).","PeriodicalId":46578,"journal":{"name":"International Journal of Management Science and Engineering Management","volume":"45 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biochemical changes caused by Zinc oxide Nanoparticles synthesized using Ficus thonningii extract in induced diabetic Wistar Albino Rats\",\"authors\":\"Abubakar A.L, Umar H, Yunusa R.D., Alhaji M.M., Abdullahi A.A., Usaini M.U.\",\"doi\":\"10.36647/ijsem/09.10.a017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Green synthesis of nanoparticles known as the synthesis of nanoparticles using biosynthetic methods involving naturally reducing agents such as polysaccharides, biological microorganism such as bacteria and fungus or plants extract. The synthesis of nanoparticles by the use of biological methods have reached a colossal signification above physical and chemical procedures, this is due to the use of innocuous, biocompatible, and ecologically-sound substrates and remarkably uncomplicated synthetic processes at encompassing conditions. In this research, the synthesis, characterization and the determination of the antibacterial activity of Zinc oxide Nanoparticles (ZnO NPs) was ascertained using stem bark extract of Ficus thonningii (Blume) as a stabilizing agent. However, the anti-diabetic activity and some biochemical changes caused by the synthesized ZnO NPs on alloxan-induced diabetic Wistar Rats were also determined. ZnO NPs were synthesized using biological method at different concentrations of ZnO solution (1mM, 2mM, 3mM and 4mM), these NPs were characterized using UV-visible spectroscopy, FTIR and SEM. Wistar rats weight 185 ± 5g were grouped into nine (9) groups (A, B, C, D, E, F, G, and I). Group A served as normal control which was given only feed and water, group B, C, D and E, were induce and treated with 1mM, 2mM, 3mM and 4mM ZnONPs respectively, then F and G were induced and treated with aqueous extract and ethanolic extract while H was induced and treated with Glibenclamide (standard drug for diabetes) by gavage method and finally I was induced and untreated which served as diabetic control. The results showed that ZnO NPs were synthesized with the indication of the change in colour from yellow to dark brown colour. The UV-visible spectroscopy was taken at range between 200nm to 700nm which displayed different peaks at the range of 209nm to 383nm. However, the FTIR showed the existence of various functional groups such as C=C stretch, C≡C stretch and Alcohol OH stretch representing the bioactive compounds such as phenol, amine and many others. The Nanoparticles were analyzed with SEM to examine the morphology of the Nanoparticles. The diabetic induced rats revealed significant decrease in fasting blood glucose after treatment compared with the diabetic untreated rats, the doses were effective when compared with Glibenclamide treated rats. The levels of serum Alkaline phosphatase, Alanine Amino transferase, Albumin, Globulin, Bilirubin, Total Protein, Urea, Creatinine and Electrolytes concentrations displayed no significant increase relative to diabetic control (p < 0.05; n ≥ 5).\",\"PeriodicalId\":46578,\"journal\":{\"name\":\"International Journal of Management Science and Engineering Management\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Management Science and Engineering Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36647/ijsem/09.10.a017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Management Science and Engineering Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36647/ijsem/09.10.a017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Biochemical changes caused by Zinc oxide Nanoparticles synthesized using Ficus thonningii extract in induced diabetic Wistar Albino Rats
Green synthesis of nanoparticles known as the synthesis of nanoparticles using biosynthetic methods involving naturally reducing agents such as polysaccharides, biological microorganism such as bacteria and fungus or plants extract. The synthesis of nanoparticles by the use of biological methods have reached a colossal signification above physical and chemical procedures, this is due to the use of innocuous, biocompatible, and ecologically-sound substrates and remarkably uncomplicated synthetic processes at encompassing conditions. In this research, the synthesis, characterization and the determination of the antibacterial activity of Zinc oxide Nanoparticles (ZnO NPs) was ascertained using stem bark extract of Ficus thonningii (Blume) as a stabilizing agent. However, the anti-diabetic activity and some biochemical changes caused by the synthesized ZnO NPs on alloxan-induced diabetic Wistar Rats were also determined. ZnO NPs were synthesized using biological method at different concentrations of ZnO solution (1mM, 2mM, 3mM and 4mM), these NPs were characterized using UV-visible spectroscopy, FTIR and SEM. Wistar rats weight 185 ± 5g were grouped into nine (9) groups (A, B, C, D, E, F, G, and I). Group A served as normal control which was given only feed and water, group B, C, D and E, were induce and treated with 1mM, 2mM, 3mM and 4mM ZnONPs respectively, then F and G were induced and treated with aqueous extract and ethanolic extract while H was induced and treated with Glibenclamide (standard drug for diabetes) by gavage method and finally I was induced and untreated which served as diabetic control. The results showed that ZnO NPs were synthesized with the indication of the change in colour from yellow to dark brown colour. The UV-visible spectroscopy was taken at range between 200nm to 700nm which displayed different peaks at the range of 209nm to 383nm. However, the FTIR showed the existence of various functional groups such as C=C stretch, C≡C stretch and Alcohol OH stretch representing the bioactive compounds such as phenol, amine and many others. The Nanoparticles were analyzed with SEM to examine the morphology of the Nanoparticles. The diabetic induced rats revealed significant decrease in fasting blood glucose after treatment compared with the diabetic untreated rats, the doses were effective when compared with Glibenclamide treated rats. The levels of serum Alkaline phosphatase, Alanine Amino transferase, Albumin, Globulin, Bilirubin, Total Protein, Urea, Creatinine and Electrolytes concentrations displayed no significant increase relative to diabetic control (p < 0.05; n ≥ 5).
期刊介绍:
International Journal of Management Science and Engineering Management (IJMSEM) is a peer-reviewed quarterly journal that provides an international forum for researchers and practitioners of management science and engineering management. The journal focuses on identifying problems in the field, and using innovative management theories and new management methods to provide solutions. IJMSEM is committed to providing a platform for researchers and practitioners of management science and engineering management to share experiences and communicate ideas. Articles published in IJMSEM contain fresh information and approaches. They provide key information that will contribute to new scientific inquiries and improve competency, efficiency, and productivity in the field. IJMSEM focuses on the following: 1. identifying Management Science problems in engineering; 2. using management theory and methods to solve above problems innovatively and effectively; 3. developing new management theory and method to the newly emerged management issues in engineering; IJMSEM prefers papers with practical background, clear problem description, understandable physical and mathematical model, physical model with practical significance and theoretical framework, operable algorithm and successful practical applications. IJMSEM also takes into account management papers of original contributions in one or several aspects of these elements.