自适应曲率卡尔曼滤波在红外半捷联导引头目标跟踪模型中的应用

Siting Peng, Yuan Liang, Hong Jiang, Qingdong Li, Xiwang Dong, Z. Ren
{"title":"自适应曲率卡尔曼滤波在红外半捷联导引头目标跟踪模型中的应用","authors":"Siting Peng, Yuan Liang, Hong Jiang, Qingdong Li, Xiwang Dong, Z. Ren","doi":"10.1109/GNCC42960.2018.9018685","DOIUrl":null,"url":null,"abstract":"According to the characteristics of the cubature Kalaman filter, the precision of filter can be improved by considering the statistical characters of the noise, thus an adaptive CKF is applied to solve the estimation problem existed in the semi-strapdown seeker system. By calculating the mean value in each iteration, the algorithm can estimate and correct the statistical characters of the noise on-line by using Sage-Husa maximum a posterior (MAP) estimator in the filtering process therefore, and then can effectively improve the estimation accuracy and stability of the CKF. When the normal and adaptive CKF methods are applied in the target tracking model of infrared semi-strapdown seeker, the simulation results show that the adaptive CKF algorithm is more feasible and effective, and it has better performance than the CKF both in stability and precision, thus demonstrating that the ACKF could obviously improve the filtering effect of normal CKF algorithm.","PeriodicalId":6623,"journal":{"name":"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)","volume":"37 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Application of An Adaptive Cubature Kalman Filter in Target Tracking Model of Infrared Semi-strapdown Seeker\",\"authors\":\"Siting Peng, Yuan Liang, Hong Jiang, Qingdong Li, Xiwang Dong, Z. Ren\",\"doi\":\"10.1109/GNCC42960.2018.9018685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to the characteristics of the cubature Kalaman filter, the precision of filter can be improved by considering the statistical characters of the noise, thus an adaptive CKF is applied to solve the estimation problem existed in the semi-strapdown seeker system. By calculating the mean value in each iteration, the algorithm can estimate and correct the statistical characters of the noise on-line by using Sage-Husa maximum a posterior (MAP) estimator in the filtering process therefore, and then can effectively improve the estimation accuracy and stability of the CKF. When the normal and adaptive CKF methods are applied in the target tracking model of infrared semi-strapdown seeker, the simulation results show that the adaptive CKF algorithm is more feasible and effective, and it has better performance than the CKF both in stability and precision, thus demonstrating that the ACKF could obviously improve the filtering effect of normal CKF algorithm.\",\"PeriodicalId\":6623,\"journal\":{\"name\":\"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)\",\"volume\":\"37 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GNCC42960.2018.9018685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GNCC42960.2018.9018685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对半捷联导引头系统中存在的噪声估计问题,提出了一种自适应滤波方法,通过考虑噪声的统计特性来提高滤波精度。该算法通过计算每次迭代的均值,在滤波过程中利用Sage-Husa极大后验(MAP)估计器在线估计和校正噪声的统计特性,从而有效提高CKF的估计精度和稳定性。将常规和自适应CKF方法分别应用于红外半捷联导引头的目标跟踪模型,仿真结果表明,自适应CKF算法更加可行和有效,在稳定性和精度上都优于常规CKF算法,从而表明ACKF可以明显改善常规CKF算法的滤波效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of An Adaptive Cubature Kalman Filter in Target Tracking Model of Infrared Semi-strapdown Seeker
According to the characteristics of the cubature Kalaman filter, the precision of filter can be improved by considering the statistical characters of the noise, thus an adaptive CKF is applied to solve the estimation problem existed in the semi-strapdown seeker system. By calculating the mean value in each iteration, the algorithm can estimate and correct the statistical characters of the noise on-line by using Sage-Husa maximum a posterior (MAP) estimator in the filtering process therefore, and then can effectively improve the estimation accuracy and stability of the CKF. When the normal and adaptive CKF methods are applied in the target tracking model of infrared semi-strapdown seeker, the simulation results show that the adaptive CKF algorithm is more feasible and effective, and it has better performance than the CKF both in stability and precision, thus demonstrating that the ACKF could obviously improve the filtering effect of normal CKF algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Sliding-Mode Disturbance Observer-Based Nonlinear Control for Unmanned Dual-Arm Aerial Manipulator Subject to State Constraints A Cloud Detection Method for Landsat 8 Satellite Remote Sensing Images Based on Improved CDNet Model Time-coordinated path following for multiple agile fixed-wing UAVs with end-roll expectations A Novel Model Calibration Method for Active Magnetic Bearing Based on Deep Reinforcement Learning Wind and Actuator Fault Estimation for a Quadrotor UAV Based on Two-Stage Particle Filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1