Chris Balouet, J. Burken, Jacques Martelain, J. Lageard, F. Karg, D. Megson
{"title":"作为法庭物证的树木化学法医:树木怎么会说谎?","authors":"Chris Balouet, J. Burken, Jacques Martelain, J. Lageard, F. Karg, D. Megson","doi":"10.1080/15275922.2021.1940381","DOIUrl":null,"url":null,"abstract":"Abstract The legal admissibility of scientific tools, such as dendrochemistry providing forensic evidence for criminal or civil cases, critically relies on the quality of fundamental and applied scientific research. The “Daubert” and “Frye” criteria that federal courts in the U.S.A use for determining legal admissibility requires publication of the scientific basis for the tool, and general acceptance by the scientific community. The field of dendroforensics is rapidly evolving, with new methods constantly being developed. In this manuscript we investigate how this dendrochemical evidence has been used successfully in the courtroom. The study of tree rings using physical anatomical and dendrochronological methods has been used as evidence in courts for over 150 years. From these beginnings in dendroecology dendrochemical and biological methods have matured enough to allow it to be used in forensic investigations, finding applications as a new independent line of evidence around the world, supporting cases involving murder, trafficking of protected species, and pollution crimes. We summarize some of the key applications of dendrochemistry in forensic cases and illustrate them with courtroom examples. The basic analytical methods discussed (e.g., PCR, GC-MS, LIBS, LA/ICP-MS, EDXRF) are all conventional. However, for findings to be relevant to judicial cases, the data is normally applied with additional lines of evidence gathered such as tree physiology and relevant statistics. This can allow us to gain more powerful data to help age date a specific event or to spatially identify a source material. The purpose of this article is to show how recent research has paved the way for the use of dendrochemical evidence in courts. It shows how dendrochemistry can be useful for forensic investigations including: murder cases, trafficking of protected species, and pollution crimes. The applications are illustrated by several summarized legal cases, but due to the confidential nature of some of these cases it was not always possible to provide full details or references. Graphical Abstract","PeriodicalId":11895,"journal":{"name":"Environmental Forensics","volume":"43 1","pages":"21 - 27"},"PeriodicalIF":1.5000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Dendrochemical forensics as material evidence in courts: How could trees lie?\",\"authors\":\"Chris Balouet, J. Burken, Jacques Martelain, J. Lageard, F. Karg, D. Megson\",\"doi\":\"10.1080/15275922.2021.1940381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The legal admissibility of scientific tools, such as dendrochemistry providing forensic evidence for criminal or civil cases, critically relies on the quality of fundamental and applied scientific research. The “Daubert” and “Frye” criteria that federal courts in the U.S.A use for determining legal admissibility requires publication of the scientific basis for the tool, and general acceptance by the scientific community. The field of dendroforensics is rapidly evolving, with new methods constantly being developed. In this manuscript we investigate how this dendrochemical evidence has been used successfully in the courtroom. The study of tree rings using physical anatomical and dendrochronological methods has been used as evidence in courts for over 150 years. From these beginnings in dendroecology dendrochemical and biological methods have matured enough to allow it to be used in forensic investigations, finding applications as a new independent line of evidence around the world, supporting cases involving murder, trafficking of protected species, and pollution crimes. We summarize some of the key applications of dendrochemistry in forensic cases and illustrate them with courtroom examples. The basic analytical methods discussed (e.g., PCR, GC-MS, LIBS, LA/ICP-MS, EDXRF) are all conventional. However, for findings to be relevant to judicial cases, the data is normally applied with additional lines of evidence gathered such as tree physiology and relevant statistics. This can allow us to gain more powerful data to help age date a specific event or to spatially identify a source material. The purpose of this article is to show how recent research has paved the way for the use of dendrochemical evidence in courts. It shows how dendrochemistry can be useful for forensic investigations including: murder cases, trafficking of protected species, and pollution crimes. The applications are illustrated by several summarized legal cases, but due to the confidential nature of some of these cases it was not always possible to provide full details or references. Graphical Abstract\",\"PeriodicalId\":11895,\"journal\":{\"name\":\"Environmental Forensics\",\"volume\":\"43 1\",\"pages\":\"21 - 27\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Forensics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15275922.2021.1940381\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Forensics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15275922.2021.1940381","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Dendrochemical forensics as material evidence in courts: How could trees lie?
Abstract The legal admissibility of scientific tools, such as dendrochemistry providing forensic evidence for criminal or civil cases, critically relies on the quality of fundamental and applied scientific research. The “Daubert” and “Frye” criteria that federal courts in the U.S.A use for determining legal admissibility requires publication of the scientific basis for the tool, and general acceptance by the scientific community. The field of dendroforensics is rapidly evolving, with new methods constantly being developed. In this manuscript we investigate how this dendrochemical evidence has been used successfully in the courtroom. The study of tree rings using physical anatomical and dendrochronological methods has been used as evidence in courts for over 150 years. From these beginnings in dendroecology dendrochemical and biological methods have matured enough to allow it to be used in forensic investigations, finding applications as a new independent line of evidence around the world, supporting cases involving murder, trafficking of protected species, and pollution crimes. We summarize some of the key applications of dendrochemistry in forensic cases and illustrate them with courtroom examples. The basic analytical methods discussed (e.g., PCR, GC-MS, LIBS, LA/ICP-MS, EDXRF) are all conventional. However, for findings to be relevant to judicial cases, the data is normally applied with additional lines of evidence gathered such as tree physiology and relevant statistics. This can allow us to gain more powerful data to help age date a specific event or to spatially identify a source material. The purpose of this article is to show how recent research has paved the way for the use of dendrochemical evidence in courts. It shows how dendrochemistry can be useful for forensic investigations including: murder cases, trafficking of protected species, and pollution crimes. The applications are illustrated by several summarized legal cases, but due to the confidential nature of some of these cases it was not always possible to provide full details or references. Graphical Abstract
期刊介绍:
Environmental Forensics provides a forum for scientific investigations that address environment contamination, its sources, and the historical reconstruction of its release into the environment. The context for investigations that form the published papers in the journal are often subjects to regulatory or legal proceedings, public scrutiny, and debate. In all contexts, rigorous scientific underpinnings guide the subject investigations.
Specifically, the journal is an international, quarterly, peer-reviewed publication offering scientific studies that explore or are relevant to the source, age, fate, transport, as well as human health and ecological effects of environmental contamination. Journal subject matter encompasses all aspects of contamination mentioned above within the environmental media of air, water, soil, sediments and biota. Data evaluation and analysis approaches are highlighted as well including multivariate statistical methods. Journal focus is on scientific and technical information, data, and critical analysis in the following areas:
-Contaminant Fingerprinting for source identification and/or age-dating, including (but not limited to) chemical, isotopic, chiral, mineralogical/microscopy techniques, DNA and tree-ring fingerprinting
-Specific Evaluative Techniques for source identification and/or age-dating including (but not limited to) historical document and aerial photography review, signature chemicals, atmospheric tracers and markets forensics, background concentration evaluations.
-Statistical Evaluation, Contaminant Modeling and Data Visualization
-Vapor Intrusion including delineating the source and background values of indoor air contamination
-Integrated Case Studies, employing environmental fate techniques
-Legal Considerations, including strategic considerations for environmental fate in litigation and arbitration, and regulatory statutes and actions