超新星宇宙学的样本选择特征

A. Kim
{"title":"超新星宇宙学的样本选择特征","authors":"A. Kim","doi":"10.21105/ASTRO.2007.11100","DOIUrl":null,"url":null,"abstract":"Type Ia supernovae (SNe Ia) are used as distance indicators to infer the cosmological parameters that specify the expansion history of the universe. Parameter inference depends on the criteria by which the analysis SN sample is selected. Only for the simplest selection criteria and population models can the likelihood be calculated analytically, otherwise it needs to be determined numerically, a process that inherently has error. Numerical errors in the likelihood lead to errors in parameter inference. This article presents toy examples where the distance modulus is inferred given a set of SNe at a single redshift. Parameter estimators and their uncertainties are calculated using Monte Carlo techniques. The relationship between the number of Monte Carlo realizations and numerical errors is presented. The procedure can be applied to more realistic models and used to determine the computational and data management requirements of the transient analysis pipeline.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"412 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characterizing the Sample Selection for Supernova Cosmology\",\"authors\":\"A. Kim\",\"doi\":\"10.21105/ASTRO.2007.11100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Type Ia supernovae (SNe Ia) are used as distance indicators to infer the cosmological parameters that specify the expansion history of the universe. Parameter inference depends on the criteria by which the analysis SN sample is selected. Only for the simplest selection criteria and population models can the likelihood be calculated analytically, otherwise it needs to be determined numerically, a process that inherently has error. Numerical errors in the likelihood lead to errors in parameter inference. This article presents toy examples where the distance modulus is inferred given a set of SNe at a single redshift. Parameter estimators and their uncertainties are calculated using Monte Carlo techniques. The relationship between the number of Monte Carlo realizations and numerical errors is presented. The procedure can be applied to more realistic models and used to determine the computational and data management requirements of the transient analysis pipeline.\",\"PeriodicalId\":8431,\"journal\":{\"name\":\"arXiv: Cosmology and Nongalactic Astrophysics\",\"volume\":\"412 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Cosmology and Nongalactic Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21105/ASTRO.2007.11100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Cosmology and Nongalactic Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21105/ASTRO.2007.11100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Ia型超新星(SNe Ia)被用作距离指示器来推断宇宙参数,这些参数指定了宇宙的膨胀历史。参数推断取决于选择分析SN样本的标准。只有对于最简单的选择标准和人口模型,似然才能进行解析计算,否则就需要用数值方法来确定,这一过程本身就存在误差。似然的数值误差会导致参数推断的误差。本文给出了一些简单的例子,其中距离模量是在单个红移处给出一组SNe的情况下推断出来的。利用蒙特卡罗技术计算参数估计量及其不确定性。给出了蒙特卡罗实现数与数值误差之间的关系。该程序可以应用于更现实的模型,并用于确定瞬态分析管道的计算和数据管理要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterizing the Sample Selection for Supernova Cosmology
Type Ia supernovae (SNe Ia) are used as distance indicators to infer the cosmological parameters that specify the expansion history of the universe. Parameter inference depends on the criteria by which the analysis SN sample is selected. Only for the simplest selection criteria and population models can the likelihood be calculated analytically, otherwise it needs to be determined numerically, a process that inherently has error. Numerical errors in the likelihood lead to errors in parameter inference. This article presents toy examples where the distance modulus is inferred given a set of SNe at a single redshift. Parameter estimators and their uncertainties are calculated using Monte Carlo techniques. The relationship between the number of Monte Carlo realizations and numerical errors is presented. The procedure can be applied to more realistic models and used to determine the computational and data management requirements of the transient analysis pipeline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Primordial Black Holes: from Theory to Gravitational Wave Observations Chasing the Tail of Cosmic Reionization with Dark Gap Statistics in the Ly$α$ Forest over $5 < z < 6$ Hubble tension and absolute constraints on the local Hubble parameter. Towards an Optimal Estimation of Cosmological Parameters with the Wavelet Scattering Transform Assessment of the cosmic distance duality relation using Gaussian process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1