基于异常的机器学习分类器技术的移动恶意软件检测

S. Hani, Naji Matter Sahib
{"title":"基于异常的机器学习分类器技术的移动恶意软件检测","authors":"S. Hani, Naji Matter Sahib","doi":"10.35940/ijitee.k1040.09811s219","DOIUrl":null,"url":null,"abstract":"Mobile phones are a significant component of people's life and are progressively engaged in these technologies. Increasing customer numbers encourages the hackers to make malware. In addition, the security of sensitive data is regarded lightly on mobile devices. Based on current approaches, recent malware changes fast and thus become more difficult to detect. In this paper an alternative solution to detect malware using anomaly-based classifier is proposed. Among the variety of machine learning classifiers to classify the latest Android malwares, a novel mixed kernel function incorporated with improved support vector machine is proposed. In processing the categories selected are general information, data content, time and connection information among various network functions. The experimentation is performed on MalGenome dataset. Upon implementation of proposed mixed kernel SVM method, the obtained results of performance achieved 96.89% of accuracy, which is more effective compared with existing models.","PeriodicalId":11231,"journal":{"name":"Diyala Journal for Pure Science","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Mobile Malware Detection using Anomaly Based Machine Learning Classifier Techniques\",\"authors\":\"S. Hani, Naji Matter Sahib\",\"doi\":\"10.35940/ijitee.k1040.09811s219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile phones are a significant component of people's life and are progressively engaged in these technologies. Increasing customer numbers encourages the hackers to make malware. In addition, the security of sensitive data is regarded lightly on mobile devices. Based on current approaches, recent malware changes fast and thus become more difficult to detect. In this paper an alternative solution to detect malware using anomaly-based classifier is proposed. Among the variety of machine learning classifiers to classify the latest Android malwares, a novel mixed kernel function incorporated with improved support vector machine is proposed. In processing the categories selected are general information, data content, time and connection information among various network functions. The experimentation is performed on MalGenome dataset. Upon implementation of proposed mixed kernel SVM method, the obtained results of performance achieved 96.89% of accuracy, which is more effective compared with existing models.\",\"PeriodicalId\":11231,\"journal\":{\"name\":\"Diyala Journal for Pure Science\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diyala Journal for Pure Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35940/ijitee.k1040.09811s219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diyala Journal for Pure Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35940/ijitee.k1040.09811s219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

移动电话是人们生活的一个重要组成部分,并逐渐参与这些技术。客户数量的增加鼓励了黑客制作恶意软件。此外,在移动设备上,敏感数据的安全性被忽视。基于目前的方法,最近的恶意软件变化很快,因此变得更难以检测。本文提出了一种基于异常的分类器检测恶意软件的替代方案。在各种机器学习分类器中,提出了一种结合改进支持向量机的混合核函数。在处理中选择的类别有一般信息、数据内容、时间和各种网络功能之间的连接信息。实验在MalGenome数据集上进行。将所提出的混合核支持向量机方法实现后,得到的性能结果达到96.89%的准确率,与现有模型相比更加有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mobile Malware Detection using Anomaly Based Machine Learning Classifier Techniques
Mobile phones are a significant component of people's life and are progressively engaged in these technologies. Increasing customer numbers encourages the hackers to make malware. In addition, the security of sensitive data is regarded lightly on mobile devices. Based on current approaches, recent malware changes fast and thus become more difficult to detect. In this paper an alternative solution to detect malware using anomaly-based classifier is proposed. Among the variety of machine learning classifiers to classify the latest Android malwares, a novel mixed kernel function incorporated with improved support vector machine is proposed. In processing the categories selected are general information, data content, time and connection information among various network functions. The experimentation is performed on MalGenome dataset. Upon implementation of proposed mixed kernel SVM method, the obtained results of performance achieved 96.89% of accuracy, which is more effective compared with existing models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesis and Characterization of Magnetic (Co-Ni-Fe2O4) Nano Ferrite for Biomedical Application Preparation and Study of Some Properties, Apparent Porosity, True Density and Water Absorption of Polymeric Films (PVA) Reinforced by CdCl2.H2O Salt. Preparation and Study of Some Mechanical Properties of Polymeric Blend Films [PVA: PVP-CaCl2.2H2O] A Hybrid System for Classification of Skin Cancer Images Using Artificial Neural Network and Support Vector Machine Study of the Morphological, Optical, and Thermal Properties of the Polymeric Blend CMC/PEG Reinforced by Various Concentrations of Au NPs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1