基于GLM的自回归过程模拟土耳其Covid-19大流行

A. Alin
{"title":"基于GLM的自回归过程模拟土耳其Covid-19大流行","authors":"A. Alin","doi":"10.1515/scid-2020-0006","DOIUrl":null,"url":null,"abstract":"Abstract Objectives: Our objective is to propose a robust approach to model daily new cases and daily new deaths due to covid-19 infection in Turkey. Methods: We consider the generalized linear model (GLM) approach for the autoregressive process (AR) with log link for modelling. We study the data between March 11, 2020 that is the date first confirmed case occurred and October 20, 2020. After a month of the first outbreak in Turkey, the first official curfew has been imposed during the weekend. Since then there have been curfews each weekend till June 1st. Hence, we include intervention effects as well as some outlying data points in the model where necessary. We use the data between March 11 and September 15 to build the models, and test the performance on the data from September 16 till October 20. We also study the consistency of the model statistics. Results: Estimated models fit data quite well. Results reveal that after the first curfew daily new Covid-19 cases decrease 18.5%. As expected, effect of the curfew gets more significant once a month is past, and daily new cases cut down 24.9%. Our approach also gives a robust estimate for the effective reproduction number that is approximately 2 meaning as of October 20, 2020 there is still a risk for an infected person to cause 2 secondary infections despite all the interventions, preventions, and rules. Conclusion: The GLM approach for AR process with log link produces consistent and robust estimates for the daily new cases and daily new deaths for the data covering almost the first year of the pandemic in Turkey. The proposed approach can also be used to model the cases in other countries.","PeriodicalId":74867,"journal":{"name":"Statistical communications in infectious diseases","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GLM based auto-regressive process to model Covid-19 pandemic in Turkey\",\"authors\":\"A. Alin\",\"doi\":\"10.1515/scid-2020-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Objectives: Our objective is to propose a robust approach to model daily new cases and daily new deaths due to covid-19 infection in Turkey. Methods: We consider the generalized linear model (GLM) approach for the autoregressive process (AR) with log link for modelling. We study the data between March 11, 2020 that is the date first confirmed case occurred and October 20, 2020. After a month of the first outbreak in Turkey, the first official curfew has been imposed during the weekend. Since then there have been curfews each weekend till June 1st. Hence, we include intervention effects as well as some outlying data points in the model where necessary. We use the data between March 11 and September 15 to build the models, and test the performance on the data from September 16 till October 20. We also study the consistency of the model statistics. Results: Estimated models fit data quite well. Results reveal that after the first curfew daily new Covid-19 cases decrease 18.5%. As expected, effect of the curfew gets more significant once a month is past, and daily new cases cut down 24.9%. Our approach also gives a robust estimate for the effective reproduction number that is approximately 2 meaning as of October 20, 2020 there is still a risk for an infected person to cause 2 secondary infections despite all the interventions, preventions, and rules. Conclusion: The GLM approach for AR process with log link produces consistent and robust estimates for the daily new cases and daily new deaths for the data covering almost the first year of the pandemic in Turkey. The proposed approach can also be used to model the cases in other countries.\",\"PeriodicalId\":74867,\"journal\":{\"name\":\"Statistical communications in infectious diseases\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical communications in infectious diseases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/scid-2020-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical communications in infectious diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/scid-2020-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:我们的目标是提出一种强大的方法来模拟土耳其因covid-19感染导致的每日新病例和每日新死亡人数。方法:我们考虑用广义线性模型(GLM)方法对自回归过程(AR)进行建模。我们研究了2020年3月11日(即第一例确诊病例发生的日期)到2020年10月20日之间的数据。土耳其首次爆发疫情一个月后,周末首次实施官方宵禁。从那时起,每个周末都实行宵禁,直到6月1日。因此,我们在必要时将干预效应以及一些离群数据点包括在模型中。我们使用3月11日至9月15日的数据建立模型,并在9月16日至10月20日的数据上测试性能。我们还研究了模型统计量的一致性。结果:估计模型与数据拟合较好。结果显示,第一次宵禁后,每日新发病例减少18.5%。正如预期的那样,宵禁的效果每月都会变得更加明显,每天的新病例减少了24.9%。我们的方法还给出了有效繁殖数的稳健估计,该估计约为2,这意味着截至2020年10月20日,尽管采取了所有干预措施、预防措施和规则,但感染者仍有可能导致2次继发感染。结论:具有日志链接的AR过程GLM方法对覆盖土耳其大流行几乎第一年的数据产生了一致和可靠的每日新病例和每日新死亡估计数。所提出的方法也可用于模拟其他国家的案例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GLM based auto-regressive process to model Covid-19 pandemic in Turkey
Abstract Objectives: Our objective is to propose a robust approach to model daily new cases and daily new deaths due to covid-19 infection in Turkey. Methods: We consider the generalized linear model (GLM) approach for the autoregressive process (AR) with log link for modelling. We study the data between March 11, 2020 that is the date first confirmed case occurred and October 20, 2020. After a month of the first outbreak in Turkey, the first official curfew has been imposed during the weekend. Since then there have been curfews each weekend till June 1st. Hence, we include intervention effects as well as some outlying data points in the model where necessary. We use the data between March 11 and September 15 to build the models, and test the performance on the data from September 16 till October 20. We also study the consistency of the model statistics. Results: Estimated models fit data quite well. Results reveal that after the first curfew daily new Covid-19 cases decrease 18.5%. As expected, effect of the curfew gets more significant once a month is past, and daily new cases cut down 24.9%. Our approach also gives a robust estimate for the effective reproduction number that is approximately 2 meaning as of October 20, 2020 there is still a risk for an infected person to cause 2 secondary infections despite all the interventions, preventions, and rules. Conclusion: The GLM approach for AR process with log link produces consistent and robust estimates for the daily new cases and daily new deaths for the data covering almost the first year of the pandemic in Turkey. The proposed approach can also be used to model the cases in other countries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study design approaches for future active-controlled HIV prevention trials. The role of randomization inference in unraveling individual treatment effects in early phase vaccine trials. Nonlinear mixed-effects models for HIV viral load trajectories before and after antiretroviral therapy interruption, incorporating left censoring. Estimation and interpretation of vaccine efficacy in COVID-19 randomized clinical trials Sample size calculation for active-arm trial with counterfactual incidence based on recency assay.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1