Hye-A Kim, Chan Hee Park, Chaehyun Suh, Minseok Chae, Heonjun Yoon, Byeng D. Youn
{"title":"MPARN:多尺度路径关注残差网络用于旋转机械故障诊断","authors":"Hye-A Kim, Chan Hee Park, Chaehyun Suh, Minseok Chae, Heonjun Yoon, Byeng D. Youn","doi":"10.1093/jcde/qwad031","DOIUrl":null,"url":null,"abstract":"\n Multi-scale convolutional neural network structures consisting of parallel convolution paths with different kernel sizes have been developed to extract features from multiple temporal scales and applied for fault diagnosis of rotating machines. However, when the extracted features are used to the same extent regardless of the temporal scale inside the network, good diagnostic performance may not be guaranteed due to the influence of the features of certain temporal scale less related to faults. Considering this issue, this paper presents a novel architecture called a multi-scale path attention residual network to further enhance the feature representational ability of a multi-scale structure. Multi-scale path attention residual network adopts a path attention module after a multi-scale dilated convolution layer, assigning different weights to features from different convolution paths. In addition, the network is composed of a stacked multi-scale attention residual block structure to continuously extract meaningful multi-scale characteristics and relationships between scales. The effectiveness of the proposed method is verified by examining its application to a helical gearbox vibration dataset and a permanent magnet synchronous motor current dataset. The results show that the proposed multi-scale path attention residual network can improve the feature learning ability of the multi-scale structure and achieve better fault diagnosis performance.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":"32 1","pages":"860-872"},"PeriodicalIF":4.8000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MPARN: multi-scale path attention residual network for fault diagnosis of rotating machines\",\"authors\":\"Hye-A Kim, Chan Hee Park, Chaehyun Suh, Minseok Chae, Heonjun Yoon, Byeng D. Youn\",\"doi\":\"10.1093/jcde/qwad031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Multi-scale convolutional neural network structures consisting of parallel convolution paths with different kernel sizes have been developed to extract features from multiple temporal scales and applied for fault diagnosis of rotating machines. However, when the extracted features are used to the same extent regardless of the temporal scale inside the network, good diagnostic performance may not be guaranteed due to the influence of the features of certain temporal scale less related to faults. Considering this issue, this paper presents a novel architecture called a multi-scale path attention residual network to further enhance the feature representational ability of a multi-scale structure. Multi-scale path attention residual network adopts a path attention module after a multi-scale dilated convolution layer, assigning different weights to features from different convolution paths. In addition, the network is composed of a stacked multi-scale attention residual block structure to continuously extract meaningful multi-scale characteristics and relationships between scales. The effectiveness of the proposed method is verified by examining its application to a helical gearbox vibration dataset and a permanent magnet synchronous motor current dataset. The results show that the proposed multi-scale path attention residual network can improve the feature learning ability of the multi-scale structure and achieve better fault diagnosis performance.\",\"PeriodicalId\":48611,\"journal\":{\"name\":\"Journal of Computational Design and Engineering\",\"volume\":\"32 1\",\"pages\":\"860-872\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Design and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jcde/qwad031\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Design and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jcde/qwad031","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
MPARN: multi-scale path attention residual network for fault diagnosis of rotating machines
Multi-scale convolutional neural network structures consisting of parallel convolution paths with different kernel sizes have been developed to extract features from multiple temporal scales and applied for fault diagnosis of rotating machines. However, when the extracted features are used to the same extent regardless of the temporal scale inside the network, good diagnostic performance may not be guaranteed due to the influence of the features of certain temporal scale less related to faults. Considering this issue, this paper presents a novel architecture called a multi-scale path attention residual network to further enhance the feature representational ability of a multi-scale structure. Multi-scale path attention residual network adopts a path attention module after a multi-scale dilated convolution layer, assigning different weights to features from different convolution paths. In addition, the network is composed of a stacked multi-scale attention residual block structure to continuously extract meaningful multi-scale characteristics and relationships between scales. The effectiveness of the proposed method is verified by examining its application to a helical gearbox vibration dataset and a permanent magnet synchronous motor current dataset. The results show that the proposed multi-scale path attention residual network can improve the feature learning ability of the multi-scale structure and achieve better fault diagnosis performance.
期刊介绍:
Journal of Computational Design and Engineering is an international journal that aims to provide academia and industry with a venue for rapid publication of research papers reporting innovative computational methods and applications to achieve a major breakthrough, practical improvements, and bold new research directions within a wide range of design and engineering:
• Theory and its progress in computational advancement for design and engineering
• Development of computational framework to support large scale design and engineering
• Interaction issues among human, designed artifacts, and systems
• Knowledge-intensive technologies for intelligent and sustainable systems
• Emerging technology and convergence of technology fields presented with convincing design examples
• Educational issues for academia, practitioners, and future generation
• Proposal on new research directions as well as survey and retrospectives on mature field.