使用基于图的半监督学习的图像着色

Beibei Liu, Z.-M. Lu
{"title":"使用基于图的半监督学习的图像着色","authors":"Beibei Liu, Z.-M. Lu","doi":"10.1049/IET-IPR.2008.0112","DOIUrl":null,"url":null,"abstract":"A novel colourisation algorithm using graph-based semi-supervised learning (SSL) is presented. We show that the assumption of the colourisation problem is consistent with the fundamental of graph-based SSL methods. Satisfactory results are obtained in the experiments that validate the proposed algorithm. To reduce the time and memory requirements when dealing with large scale images, we further propose a two-stage speedup approach. Comparative results show that the computation complexity is dramatically reduced.","PeriodicalId":13486,"journal":{"name":"IET Image Process.","volume":"12 1","pages":"115-120"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Image colourisation using graph-based semi-supervised learning\",\"authors\":\"Beibei Liu, Z.-M. Lu\",\"doi\":\"10.1049/IET-IPR.2008.0112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel colourisation algorithm using graph-based semi-supervised learning (SSL) is presented. We show that the assumption of the colourisation problem is consistent with the fundamental of graph-based SSL methods. Satisfactory results are obtained in the experiments that validate the proposed algorithm. To reduce the time and memory requirements when dealing with large scale images, we further propose a two-stage speedup approach. Comparative results show that the computation complexity is dramatically reduced.\",\"PeriodicalId\":13486,\"journal\":{\"name\":\"IET Image Process.\",\"volume\":\"12 1\",\"pages\":\"115-120\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Image Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/IET-IPR.2008.0112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Image Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/IET-IPR.2008.0112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

提出了一种基于图的半监督学习(SSL)的着色算法。我们表明,着色问题的假设与基于图形的SSL方法的基本原理是一致的。实验验证了该算法的有效性,取得了满意的结果。为了减少处理大规模图像时对时间和内存的需求,我们进一步提出了一种两阶段加速方法。对比结果表明,该方法大大降低了计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image colourisation using graph-based semi-supervised learning
A novel colourisation algorithm using graph-based semi-supervised learning (SSL) is presented. We show that the assumption of the colourisation problem is consistent with the fundamental of graph-based SSL methods. Satisfactory results are obtained in the experiments that validate the proposed algorithm. To reduce the time and memory requirements when dealing with large scale images, we further propose a two-stage speedup approach. Comparative results show that the computation complexity is dramatically reduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mask-Guided Image Person Removal with Data Synthesis EDAfuse: A encoder-decoder with atrous spatial pyramid network for infrared and visible image fusion Visible part prediction and temporal calibration for pedestrian detection STDC-MA Network for Semantic Segmentation Multi-similarity based Hyperrelation Network for few-shot segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1