低空机场作战中无人机与有人驾驶飞机精确相对导航与分离保障

E. Schuster, Christoph Struempfel, Svenja Huschbeck, B. Goebel, Christiane Berth, M. Haag
{"title":"低空机场作战中无人机与有人驾驶飞机精确相对导航与分离保障","authors":"E. Schuster, Christoph Struempfel, Svenja Huschbeck, B. Goebel, Christiane Berth, M. Haag","doi":"10.2514/6.2020-0057","DOIUrl":null,"url":null,"abstract":"This paper discusses the flight test setup and preliminary results of a precise relative navigation and separation assurance system to support safe simultaneous operation of general aviation aircraft and UAS at low altitudes in the vicinity of an uncontrolled airfield. With an increased use of UAS for a wide variety of applications, such as law enforcement, search and rescue, agriculture, infrastructure inspection, maintenance, mapping, filming and journalism, it is expected that UAS will be taking off, landing or otherwise operating at airfields at the same time as manned aircraft. In that case, it will be required that the UAS not only has precise knowledge of its location and velocity to enable an automatic flight at lower altitudes with sufficient accuracy, integrity, availability and continuity to support its operation (e.g. take-off, landing, flight patterns), but also to support broadcasting its position and velocity to the other aircraft in the vicinity, for improved awareness of the UAS location and to achieve separation assurance","PeriodicalId":93413,"journal":{"name":"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precise Relative Navigation and Separation Assurance of UAS and Manned Aircraft during Low Altitude Airfield Operations\",\"authors\":\"E. Schuster, Christoph Struempfel, Svenja Huschbeck, B. Goebel, Christiane Berth, M. Haag\",\"doi\":\"10.2514/6.2020-0057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the flight test setup and preliminary results of a precise relative navigation and separation assurance system to support safe simultaneous operation of general aviation aircraft and UAS at low altitudes in the vicinity of an uncontrolled airfield. With an increased use of UAS for a wide variety of applications, such as law enforcement, search and rescue, agriculture, infrastructure inspection, maintenance, mapping, filming and journalism, it is expected that UAS will be taking off, landing or otherwise operating at airfields at the same time as manned aircraft. In that case, it will be required that the UAS not only has precise knowledge of its location and velocity to enable an automatic flight at lower altitudes with sufficient accuracy, integrity, availability and continuity to support its operation (e.g. take-off, landing, flight patterns), but also to support broadcasting its position and velocity to the other aircraft in the vicinity, for improved awareness of the UAS location and to achieve separation assurance\",\"PeriodicalId\":93413,\"journal\":{\"name\":\"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/6.2020-0057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2020-0057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了一种支持通用航空飞机和无人机在无管制机场附近低空同时安全运行的精确相对导航和分离保障系统的飞行试验设置和初步结果。随着无人机在执法、搜索和救援、农业、基础设施检查、维护、测绘、拍摄和新闻等各种应用中的使用越来越多,预计无人机将与有人驾驶飞机同时在机场起飞、降落或以其他方式运行。在这种情况下,将要求无人机不仅具有精确的位置和速度知识,以便在较低高度自动飞行,具有足够的准确性、完整性、可用性和连续性,以支持其操作(例如起飞、降落、飞行模式),而且还支持向附近的其他飞机广播其位置和速度,以提高对无人机位置的认识,并实现分离保证
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Precise Relative Navigation and Separation Assurance of UAS and Manned Aircraft during Low Altitude Airfield Operations
This paper discusses the flight test setup and preliminary results of a precise relative navigation and separation assurance system to support safe simultaneous operation of general aviation aircraft and UAS at low altitudes in the vicinity of an uncontrolled airfield. With an increased use of UAS for a wide variety of applications, such as law enforcement, search and rescue, agriculture, infrastructure inspection, maintenance, mapping, filming and journalism, it is expected that UAS will be taking off, landing or otherwise operating at airfields at the same time as manned aircraft. In that case, it will be required that the UAS not only has precise knowledge of its location and velocity to enable an automatic flight at lower altitudes with sufficient accuracy, integrity, availability and continuity to support its operation (e.g. take-off, landing, flight patterns), but also to support broadcasting its position and velocity to the other aircraft in the vicinity, for improved awareness of the UAS location and to achieve separation assurance
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
nCoV-BusterBot: Mission Simulation Lab Modules for Supporting a Lab-based Autonomous Systems Class in a Remote Learning Environment Experimental Force and Deformation Measurements of Bioinspired Flapping Wings in Ultra-Low Martian Density Environment. System Analyzer for a Bioinspired Mars Flight Vehicle System for Varying Mission Contexts. Burning Rate Characterization of Ammonium Perchlorate Pellets Containing Nano-Catalytic Additives The Effects of Turbulence-Kinetics Interactions on Reducing Chemical Mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1