关于具有一般独立列的数据矩阵的奇异值

T. Mei, Chen Wang, Jianfeng Yao
{"title":"关于具有一般独立列的数据矩阵的奇异值","authors":"T. Mei, Chen Wang, Jianfeng Yao","doi":"10.1214/23-aos2263","DOIUrl":null,"url":null,"abstract":"In this paper, we analyse singular values of a large $p\\times n$ data matrix $\\mathbf{X}_n= (\\mathbf{x}_{n1},\\ldots,\\mathbf{x}_{nn})$ where the column $\\mathbf{x}_{nj}$'s are independent $p$-dimensional vectors, possibly with different distributions. Such data matrices are common in high-dimensional statistics. Under a key assumption that the covariance matrices $\\mathbf{\\Sigma}_{nj}=\\text{Cov}(\\mathbf{x}_{nj})$ can be asymptotically simultaneously diagonalizable, and appropriate convergence of their spectra, we establish a limiting distribution for the singular values of $\\mathbf{X}_n$ when both dimension $p$ and $n$ grow to infinity in a comparable magnitude. The matrix model goes beyond and includes many existing works on different types of sample covariance matrices, including the weighted sample covariance matrix, the Gram matrix model and the sample covariance matrix of linear times series models. Furthermore, we develop two applications of our general approach. First, we obtain the existence and uniqueness of a new limiting spectral distribution of realized covariance matrices for a multi-dimensional diffusion process with anisotropic time-varying co-volatility processes. Secondly, we derive the limiting spectral distribution for singular values of the data matrix for a recent matrix-valued auto-regressive model. Finally, for a generalized finite mixture model, the limiting spectral distribution for singular values of the data matrix is obtained.","PeriodicalId":22375,"journal":{"name":"The Annals of Statistics","volume":"125 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On singular values of data matrices with general independent columns\",\"authors\":\"T. Mei, Chen Wang, Jianfeng Yao\",\"doi\":\"10.1214/23-aos2263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we analyse singular values of a large $p\\\\times n$ data matrix $\\\\mathbf{X}_n= (\\\\mathbf{x}_{n1},\\\\ldots,\\\\mathbf{x}_{nn})$ where the column $\\\\mathbf{x}_{nj}$'s are independent $p$-dimensional vectors, possibly with different distributions. Such data matrices are common in high-dimensional statistics. Under a key assumption that the covariance matrices $\\\\mathbf{\\\\Sigma}_{nj}=\\\\text{Cov}(\\\\mathbf{x}_{nj})$ can be asymptotically simultaneously diagonalizable, and appropriate convergence of their spectra, we establish a limiting distribution for the singular values of $\\\\mathbf{X}_n$ when both dimension $p$ and $n$ grow to infinity in a comparable magnitude. The matrix model goes beyond and includes many existing works on different types of sample covariance matrices, including the weighted sample covariance matrix, the Gram matrix model and the sample covariance matrix of linear times series models. Furthermore, we develop two applications of our general approach. First, we obtain the existence and uniqueness of a new limiting spectral distribution of realized covariance matrices for a multi-dimensional diffusion process with anisotropic time-varying co-volatility processes. Secondly, we derive the limiting spectral distribution for singular values of the data matrix for a recent matrix-valued auto-regressive model. Finally, for a generalized finite mixture model, the limiting spectral distribution for singular values of the data matrix is obtained.\",\"PeriodicalId\":22375,\"journal\":{\"name\":\"The Annals of Statistics\",\"volume\":\"125 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Annals of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/23-aos2263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-aos2263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们分析了一个大的$p\ * n$数据矩阵$\mathbf{X}_n= (\mathbf{X}_ {n1},\ldots,\mathbf{X}_ {nn})$的奇异值,其中列$\mathbf{X}_ {nj}$是独立的$p$维向量,可能具有不同的分布。这种数据矩阵在高维统计中很常见。在协方差矩阵$\mathbf{\Sigma}_{nj}=\text{Cov}(\mathbf{x}_{nj})$是渐近同时可对角化的关键假设下,我们建立了$\mathbf{x} _n$的奇异值在$p$和$n$都以相当的幅度增长到无穷大时的极限分布。矩阵模型是对不同类型的样本协方差矩阵的扩展,包括加权样本协方差矩阵、Gram矩阵模型和线性时间序列模型的样本协方差矩阵等。此外,我们开发了我们的一般方法的两个应用程序。首先,我们得到了具有各向异性时变共挥发过程的多维扩散过程中所实现协方差矩阵的一种新的极限谱分布的存在唯一性。其次,我们得到了一个最新的矩阵值自回归模型的数据矩阵奇异值的极限谱分布。最后,对于广义有限混合模型,得到了数据矩阵奇异值的极限谱分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On singular values of data matrices with general independent columns
In this paper, we analyse singular values of a large $p\times n$ data matrix $\mathbf{X}_n= (\mathbf{x}_{n1},\ldots,\mathbf{x}_{nn})$ where the column $\mathbf{x}_{nj}$'s are independent $p$-dimensional vectors, possibly with different distributions. Such data matrices are common in high-dimensional statistics. Under a key assumption that the covariance matrices $\mathbf{\Sigma}_{nj}=\text{Cov}(\mathbf{x}_{nj})$ can be asymptotically simultaneously diagonalizable, and appropriate convergence of their spectra, we establish a limiting distribution for the singular values of $\mathbf{X}_n$ when both dimension $p$ and $n$ grow to infinity in a comparable magnitude. The matrix model goes beyond and includes many existing works on different types of sample covariance matrices, including the weighted sample covariance matrix, the Gram matrix model and the sample covariance matrix of linear times series models. Furthermore, we develop two applications of our general approach. First, we obtain the existence and uniqueness of a new limiting spectral distribution of realized covariance matrices for a multi-dimensional diffusion process with anisotropic time-varying co-volatility processes. Secondly, we derive the limiting spectral distribution for singular values of the data matrix for a recent matrix-valued auto-regressive model. Finally, for a generalized finite mixture model, the limiting spectral distribution for singular values of the data matrix is obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximum likelihood for high-noise group orbit estimation and single-particle cryo-EM Local Whittle estimation of high-dimensional long-run variance and precision matrices Efficient estimation of the maximal association between multiple predictors and a survival outcome The impacts of unobserved covariates on covariate-adaptive randomized experiments Estimation of expected Euler characteristic curves of nonstationary smooth random fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1