使用状态-任务网络表征的可持续碳捕获与利用(CCU)途径的识别

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2023-10-01 DOI:10.1016/j.compchemeng.2023.108408
Wonsuk Chung , Sunwoo Kim , Ali S. Al-Hunaidy , Hasan Imran , Aqil Jamal , Jay H. Lee
{"title":"使用状态-任务网络表征的可持续碳捕获与利用(CCU)途径的识别","authors":"Wonsuk Chung ,&nbsp;Sunwoo Kim ,&nbsp;Ali S. Al-Hunaidy ,&nbsp;Hasan Imran ,&nbsp;Aqil Jamal ,&nbsp;Jay H. Lee","doi":"10.1016/j.compchemeng.2023.108408","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon capture and utilization (CCU) can be a pertinent solution to avoid millions of tons of carbon emission. The challenge is to identify, among numerous available options of carbon sources capture/utilization technologies, and products, the CCU pathways with best economic and/or CO<sub>2</sub> reduction potential. In this work, we propose a novel framework for identifying sustainable <em>CCU pathways</em><span>, i.e., combinations of sources, processes, and products, using a superstructure based on state-task network (STN) representation. STN allows incorporation of nonlinear models<span> including first-principles or surrogate models into the superstructure representation of potential CCU pathways. The proposed framework solves the superstructure optimization problem of mixed-integer nonlinear programming (MINLP) by introducing logic-based outer approximation (LOA), to reduce the computational time and improve the solvability greatly. A case study using a sizable CCU superstructure demonstrates that LOA can reduce the computational time from hours to minutes while identifying any sustainable pathway from a superstructure with highly nonlinear surrogate models.</span></span></p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"178 ","pages":"Article 108408"},"PeriodicalIF":3.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of sustainable carbon capture and utilization (CCU) pathways using state-task network representation\",\"authors\":\"Wonsuk Chung ,&nbsp;Sunwoo Kim ,&nbsp;Ali S. Al-Hunaidy ,&nbsp;Hasan Imran ,&nbsp;Aqil Jamal ,&nbsp;Jay H. Lee\",\"doi\":\"10.1016/j.compchemeng.2023.108408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Carbon capture and utilization (CCU) can be a pertinent solution to avoid millions of tons of carbon emission. The challenge is to identify, among numerous available options of carbon sources capture/utilization technologies, and products, the CCU pathways with best economic and/or CO<sub>2</sub> reduction potential. In this work, we propose a novel framework for identifying sustainable <em>CCU pathways</em><span>, i.e., combinations of sources, processes, and products, using a superstructure based on state-task network (STN) representation. STN allows incorporation of nonlinear models<span> including first-principles or surrogate models into the superstructure representation of potential CCU pathways. The proposed framework solves the superstructure optimization problem of mixed-integer nonlinear programming (MINLP) by introducing logic-based outer approximation (LOA), to reduce the computational time and improve the solvability greatly. A case study using a sizable CCU superstructure demonstrates that LOA can reduce the computational time from hours to minutes while identifying any sustainable pathway from a superstructure with highly nonlinear surrogate models.</span></span></p></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"178 \",\"pages\":\"Article 108408\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135423002788\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135423002788","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

碳捕获和利用(CCU)可以成为避免数百万吨碳排放的相关解决方案。我们面临的挑战是,在众多可用的碳源捕获/利用技术和产品中,找出具有最佳经济和/或二氧化碳减排潜力的CCU途径。在这项工作中,我们提出了一个新的框架来识别可持续的CCU路径,即来源,过程和产品的组合,使用基于状态任务网络(STN)表示的上层结构。STN允许将非线性模型(包括第一原理模型或替代模型)合并到潜在CCU通路的上层结构表示中。该框架通过引入基于逻辑的外近似(LOA)来解决混合整数非线性规划(MINLP)的上层结构优化问题,大大减少了计算时间,提高了可解性。一个使用大型CCU上部结构的案例研究表明,LOA可以将计算时间从数小时减少到几分钟,同时使用高度非线性替代模型从上部结构确定任何可持续路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of sustainable carbon capture and utilization (CCU) pathways using state-task network representation

Carbon capture and utilization (CCU) can be a pertinent solution to avoid millions of tons of carbon emission. The challenge is to identify, among numerous available options of carbon sources capture/utilization technologies, and products, the CCU pathways with best economic and/or CO2 reduction potential. In this work, we propose a novel framework for identifying sustainable CCU pathways, i.e., combinations of sources, processes, and products, using a superstructure based on state-task network (STN) representation. STN allows incorporation of nonlinear models including first-principles or surrogate models into the superstructure representation of potential CCU pathways. The proposed framework solves the superstructure optimization problem of mixed-integer nonlinear programming (MINLP) by introducing logic-based outer approximation (LOA), to reduce the computational time and improve the solvability greatly. A case study using a sizable CCU superstructure demonstrates that LOA can reduce the computational time from hours to minutes while identifying any sustainable pathway from a superstructure with highly nonlinear surrogate models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
Mass-Constrained hybrid Gaussian radial basis neural networks: Development, training, and applications to modeling nonlinear dynamic noisy chemical processes Editorial Board Integrating a multigeneration system into a biogas-fueled gas turbine power plant for CO2 emission reduction: An efficient design and exergy-economic assessment Surrogate modeling and optimization of the leaching process in a rare earth elements recovery plant Optimization models and heuristics for effective pipeline decommissioning planning in the oil and gas industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1