{"title":"定时正则表达式的分散运行时验证","authors":"Victor Roussanaly, Yliès Falcone","doi":"10.4230/LIPIcs.TIME.2022.6","DOIUrl":null,"url":null,"abstract":"Ensuring the correctness of distributed cyber-physical systems can be done at runtime by monitoring properties over their behaviour. In a decentralised setting, such behaviour consists of multiple local traces, each offering an incomplete view of the system events to the local monitors, as opposed to the standard centralised setting with a unique global trace. We introduce the first monitoring framework for timed properties described by timed regular expressions over a distributed network of monitors. First, we define functions to rewrite expressions according to partial knowledge for both the centralised and decentralised cases. Then, we define decentralised algorithms for monitors to evaluate properties using these functions, as well as proofs of soundness and eventual completeness of said algorithms. Finally, we implement and evaluate our framework on synthetic timed regular expressions, giving insights on the cost of the centralised and decentralised settings and when to best use each of them.","PeriodicalId":75226,"journal":{"name":"Time","volume":"73 1","pages":"6:1-6:18"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Decentralised Runtime Verification of Timed Regular Expressions\",\"authors\":\"Victor Roussanaly, Yliès Falcone\",\"doi\":\"10.4230/LIPIcs.TIME.2022.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ensuring the correctness of distributed cyber-physical systems can be done at runtime by monitoring properties over their behaviour. In a decentralised setting, such behaviour consists of multiple local traces, each offering an incomplete view of the system events to the local monitors, as opposed to the standard centralised setting with a unique global trace. We introduce the first monitoring framework for timed properties described by timed regular expressions over a distributed network of monitors. First, we define functions to rewrite expressions according to partial knowledge for both the centralised and decentralised cases. Then, we define decentralised algorithms for monitors to evaluate properties using these functions, as well as proofs of soundness and eventual completeness of said algorithms. Finally, we implement and evaluate our framework on synthetic timed regular expressions, giving insights on the cost of the centralised and decentralised settings and when to best use each of them.\",\"PeriodicalId\":75226,\"journal\":{\"name\":\"Time\",\"volume\":\"73 1\",\"pages\":\"6:1-6:18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Time\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.TIME.2022.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Time","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.TIME.2022.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Decentralised Runtime Verification of Timed Regular Expressions
Ensuring the correctness of distributed cyber-physical systems can be done at runtime by monitoring properties over their behaviour. In a decentralised setting, such behaviour consists of multiple local traces, each offering an incomplete view of the system events to the local monitors, as opposed to the standard centralised setting with a unique global trace. We introduce the first monitoring framework for timed properties described by timed regular expressions over a distributed network of monitors. First, we define functions to rewrite expressions according to partial knowledge for both the centralised and decentralised cases. Then, we define decentralised algorithms for monitors to evaluate properties using these functions, as well as proofs of soundness and eventual completeness of said algorithms. Finally, we implement and evaluate our framework on synthetic timed regular expressions, giving insights on the cost of the centralised and decentralised settings and when to best use each of them.