裂隙状纳米孔隙中类水模型的相行为。密度泛函理论的预测

IF 0.9 4区 物理与天体物理 Q4 PHYSICS, CONDENSED MATTER Condensed Matter Physics Pub Date : 2021-10-09 DOI:10.5488/CMP.24.33601
O. Pizio, S. Sokołowski, V. M. Trejos
{"title":"裂隙状纳米孔隙中类水模型的相行为。密度泛函理论的预测","authors":"O. Pizio, S. Sokołowski, V. M. Trejos","doi":"10.5488/CMP.24.33601","DOIUrl":null,"url":null,"abstract":"We have explored the phase behavior of a set of water-like models in slit pores of nanoscopic dimensions. The interaction between water and pore walls mimics the graphite surface. A version of density functional method is used as theoretical tools. The fluid models are adopted from the work of Clark et al. [Mol. Phys., 2006 104, 3561]. They reproduce the bulk water vapor-liquid coexistence envelope adequately. Our principal focus is on changes of topology of the phase diagram of confined water and establishing trends of behavior of the crossover temperature between condensation and evaporation on the strength of water-graphite interaction potential. Growth of the water film on the pore walls is illustrated in terms of the density profiles. Theoretical results are discussed in context of computer simulation findings for water models in pores.","PeriodicalId":10528,"journal":{"name":"Condensed Matter Physics","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Phase behavior of water-like models in nanoscopic pores of slit shape. Predictions from a density functional theory\",\"authors\":\"O. Pizio, S. Sokołowski, V. M. Trejos\",\"doi\":\"10.5488/CMP.24.33601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have explored the phase behavior of a set of water-like models in slit pores of nanoscopic dimensions. The interaction between water and pore walls mimics the graphite surface. A version of density functional method is used as theoretical tools. The fluid models are adopted from the work of Clark et al. [Mol. Phys., 2006 104, 3561]. They reproduce the bulk water vapor-liquid coexistence envelope adequately. Our principal focus is on changes of topology of the phase diagram of confined water and establishing trends of behavior of the crossover temperature between condensation and evaporation on the strength of water-graphite interaction potential. Growth of the water film on the pore walls is illustrated in terms of the density profiles. Theoretical results are discussed in context of computer simulation findings for water models in pores.\",\"PeriodicalId\":10528,\"journal\":{\"name\":\"Condensed Matter Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.5488/CMP.24.33601\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5488/CMP.24.33601","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 2

摘要

我们在纳米尺度的狭缝孔中探索了一组类水模型的相行为。水和孔壁之间的相互作用模拟了石墨表面。一种版本的密度泛函方法被用作理论工具。流体模型采用Clark等人的工作[Mol. Phys]。科学通报,2006(4):359 - 361。它们充分地再现了大块水蒸汽-液体共存包络。本文主要研究了承压水相图拓扑结构的变化,建立了水-石墨相互作用势强度对冷凝和蒸发交叉温度的影响趋势。水膜在孔壁上的生长用密度曲线表示。通过对孔隙水模型的计算机模拟结果对理论结果进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phase behavior of water-like models in nanoscopic pores of slit shape. Predictions from a density functional theory
We have explored the phase behavior of a set of water-like models in slit pores of nanoscopic dimensions. The interaction between water and pore walls mimics the graphite surface. A version of density functional method is used as theoretical tools. The fluid models are adopted from the work of Clark et al. [Mol. Phys., 2006 104, 3561]. They reproduce the bulk water vapor-liquid coexistence envelope adequately. Our principal focus is on changes of topology of the phase diagram of confined water and establishing trends of behavior of the crossover temperature between condensation and evaporation on the strength of water-graphite interaction potential. Growth of the water film on the pore walls is illustrated in terms of the density profiles. Theoretical results are discussed in context of computer simulation findings for water models in pores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Condensed Matter Physics
Condensed Matter Physics 物理-物理:凝聚态物理
CiteScore
1.10
自引率
16.70%
发文量
17
审稿时长
1 months
期刊介绍: Condensed Matter Physics contains original and review articles in the field of statistical mechanics and thermodynamics of equilibrium and nonequilibrium processes, relativistic mechanics of interacting particle systems.The main attention is paid to physics of solid, liquid and amorphous systems, phase equilibria and phase transitions, thermal, structural, electric, magnetic and optical properties of condensed matter. Condensed Matter Physics is published quarterly.
期刊最新文献
How should a small country respond to climate change? Aspects of the microscopic structure of curcumin solutions with water-dimethylsulfoxide solvent. Molecular dynamics computer simulation study On the existence of a second branch of transverse collective excitations in liquid metals Proportional correlation between heat capacity and thermal expansion of atomic, molecular crystals and carbon nanostructures An ab initio study of the static, dynamic and electronic properties of some liquid 5d transition metals near melting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1