{"title":"正则化分类回归学习特征非线性","authors":"Samet Oymak, M. Mahdavi, Jiasi Chen","doi":"10.1109/ISIT.2019.8849541","DOIUrl":null,"url":null,"abstract":"For various applications, the relations between the dependent and independent variables are highly nonlinear. Consequently, for large scale complex problems, neural networks and regression trees are commonly preferred over linear models such as Lasso. This work proposes learning the feature nonlinearities by binning feature values and finding the best fit in each quantile using non-convex regularized linear regression. The algorithm first captures the dependence between neighboring quantiles by enforcing smoothness via piecewise-constant/linear approximation and then selects a sparse subset of good features. We prove that the proposed algorithm is statistically and computationally efficient. In particular, it achieves linear rate of convergence while requiring near-minimal number of samples. Evaluations on real datasets demonstrate that algorithm is competitive with current state-of-the-art and accurately learns feature nonlinearities.","PeriodicalId":6708,"journal":{"name":"2019 IEEE International Symposium on Information Theory (ISIT)","volume":"8 1","pages":"1452-1456"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Feature Nonlinearities with Regularized Binned Regression\",\"authors\":\"Samet Oymak, M. Mahdavi, Jiasi Chen\",\"doi\":\"10.1109/ISIT.2019.8849541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For various applications, the relations between the dependent and independent variables are highly nonlinear. Consequently, for large scale complex problems, neural networks and regression trees are commonly preferred over linear models such as Lasso. This work proposes learning the feature nonlinearities by binning feature values and finding the best fit in each quantile using non-convex regularized linear regression. The algorithm first captures the dependence between neighboring quantiles by enforcing smoothness via piecewise-constant/linear approximation and then selects a sparse subset of good features. We prove that the proposed algorithm is statistically and computationally efficient. In particular, it achieves linear rate of convergence while requiring near-minimal number of samples. Evaluations on real datasets demonstrate that algorithm is competitive with current state-of-the-art and accurately learns feature nonlinearities.\",\"PeriodicalId\":6708,\"journal\":{\"name\":\"2019 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"8 1\",\"pages\":\"1452-1456\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2019.8849541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2019.8849541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning Feature Nonlinearities with Regularized Binned Regression
For various applications, the relations between the dependent and independent variables are highly nonlinear. Consequently, for large scale complex problems, neural networks and regression trees are commonly preferred over linear models such as Lasso. This work proposes learning the feature nonlinearities by binning feature values and finding the best fit in each quantile using non-convex regularized linear regression. The algorithm first captures the dependence between neighboring quantiles by enforcing smoothness via piecewise-constant/linear approximation and then selects a sparse subset of good features. We prove that the proposed algorithm is statistically and computationally efficient. In particular, it achieves linear rate of convergence while requiring near-minimal number of samples. Evaluations on real datasets demonstrate that algorithm is competitive with current state-of-the-art and accurately learns feature nonlinearities.