并行顺序图计算

W. Fan, Jingbo Xu, Yinghui Wu, Wenyuan Yu, Jiaxin Jiang, Zeyu Zheng, Bohan Zhang, Yang Cao, Chao Tian
{"title":"并行顺序图计算","authors":"W. Fan, Jingbo Xu, Yinghui Wu, Wenyuan Yu, Jiaxin Jiang, Zeyu Zheng, Bohan Zhang, Yang Cao, Chao Tian","doi":"10.1145/3282488","DOIUrl":null,"url":null,"abstract":"This article presents GRAPE, a parallel GRAPh Engine for graph computations. GRAPE differs from prior systems in its ability to parallelize existing sequential graph algorithms as a whole, without the need for recasting the entire algorithm into a new model. Underlying GRAPE are a simple programming model and a principled approach based on fixpoint computation that starts with partial evaluation and uses an incremental function as the intermediate consequence operator. We show that users can devise existing sequential graph algorithms with minor additions, and GRAPE parallelizes the computation. Under a monotonic condition, the GRAPE parallelization guarantees to converge at correct answers as long as the sequential algorithms are correct. Moreover, we show that algorithms in MapReduce, BSP, and PRAM can be optimally simulated on GRAPE. In addition to the ease of programming, we experimentally verify that GRAPE achieves comparable performance to the state-of-the-art graph systems using real-life and synthetic graphs.","PeriodicalId":6983,"journal":{"name":"ACM Transactions on Database Systems (TODS)","volume":"21 1","pages":"1 - 39"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Parallelizing Sequential Graph Computations\",\"authors\":\"W. Fan, Jingbo Xu, Yinghui Wu, Wenyuan Yu, Jiaxin Jiang, Zeyu Zheng, Bohan Zhang, Yang Cao, Chao Tian\",\"doi\":\"10.1145/3282488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents GRAPE, a parallel GRAPh Engine for graph computations. GRAPE differs from prior systems in its ability to parallelize existing sequential graph algorithms as a whole, without the need for recasting the entire algorithm into a new model. Underlying GRAPE are a simple programming model and a principled approach based on fixpoint computation that starts with partial evaluation and uses an incremental function as the intermediate consequence operator. We show that users can devise existing sequential graph algorithms with minor additions, and GRAPE parallelizes the computation. Under a monotonic condition, the GRAPE parallelization guarantees to converge at correct answers as long as the sequential algorithms are correct. Moreover, we show that algorithms in MapReduce, BSP, and PRAM can be optimally simulated on GRAPE. In addition to the ease of programming, we experimentally verify that GRAPE achieves comparable performance to the state-of-the-art graph systems using real-life and synthetic graphs.\",\"PeriodicalId\":6983,\"journal\":{\"name\":\"ACM Transactions on Database Systems (TODS)\",\"volume\":\"21 1\",\"pages\":\"1 - 39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Database Systems (TODS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3282488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Database Systems (TODS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3282488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

本文介绍了一个用于图计算的并行图引擎GRAPE。GRAPE与以前的系统的不同之处在于,它能够将现有的顺序图算法作为一个整体并行化,而不需要将整个算法重新转换到一个新模型中。GRAPE的基础是一个简单的编程模型和基于固定点计算的原则方法,该方法从部分求值开始,并使用增量函数作为中间结果运算符。我们表明,用户可以设计现有的顺序图算法,并进行少量的添加,而GRAPE使计算并行化。在单调条件下,只要序列算法是正确的,GRAPE并行化保证收敛于正确答案。此外,我们还证明了MapReduce、BSP和PRAM中的算法可以在GRAPE上进行最佳模拟。除了易于编程之外,我们还通过实验验证了GRAPE可以实现与使用现实生活和合成图的最先进图系统相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallelizing Sequential Graph Computations
This article presents GRAPE, a parallel GRAPh Engine for graph computations. GRAPE differs from prior systems in its ability to parallelize existing sequential graph algorithms as a whole, without the need for recasting the entire algorithm into a new model. Underlying GRAPE are a simple programming model and a principled approach based on fixpoint computation that starts with partial evaluation and uses an incremental function as the intermediate consequence operator. We show that users can devise existing sequential graph algorithms with minor additions, and GRAPE parallelizes the computation. Under a monotonic condition, the GRAPE parallelization guarantees to converge at correct answers as long as the sequential algorithms are correct. Moreover, we show that algorithms in MapReduce, BSP, and PRAM can be optimally simulated on GRAPE. In addition to the ease of programming, we experimentally verify that GRAPE achieves comparable performance to the state-of-the-art graph systems using real-life and synthetic graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Finding Rank Regret Representatives Answering (Unions of) Conjunctive Queries using Random Access and Random-Order Enumeration Persistent Summaries Influence Maximization Revisited: Efficient Sampling with Bound Tightened The Space-Efficient Core of Vadalog
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1