基于未知平面场景的摄像机自标定鲁棒方法

A. Baataoui, N. E. Akkad, A. Saaidi, K. Satori, M. Masrar
{"title":"基于未知平面场景的摄像机自标定鲁棒方法","authors":"A. Baataoui, N. E. Akkad, A. Saaidi, K. Satori, M. Masrar","doi":"10.22630/mgv.2014.23.1.3","DOIUrl":null,"url":null,"abstract":"In this paper we present a self-calibration method for a CCD camera with varying intrinsic parameters based on an unknown planar scene. The advantage of our method is reducing the number of images (two images) needed to estimate the parameters of the camera used. Moreover, self-calibration equations are related to the number of points matched (very numerous and easy to detect) rather than to the number of images, since the use of a large number of images requires high computation time. On the other hand, we base on the points matched, which are numerous, when estimating the projection matrices and homographies between the images. The latter are used with the images of the absolute conic to formulate a system of non-linear equations (self-calibration equations depend on the number of matched pairs). Finally, the intrinsic parameters of the camera can be obtained by minimizing a non-linear cost function in a two-step procedure: initialization and optimization. Experiment results show the robustness of our algorithms in terms of stability and convergence.","PeriodicalId":39750,"journal":{"name":"Machine Graphics and Vision","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2012-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust method for camera self-calibration by an unkown planar scene\",\"authors\":\"A. Baataoui, N. E. Akkad, A. Saaidi, K. Satori, M. Masrar\",\"doi\":\"10.22630/mgv.2014.23.1.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a self-calibration method for a CCD camera with varying intrinsic parameters based on an unknown planar scene. The advantage of our method is reducing the number of images (two images) needed to estimate the parameters of the camera used. Moreover, self-calibration equations are related to the number of points matched (very numerous and easy to detect) rather than to the number of images, since the use of a large number of images requires high computation time. On the other hand, we base on the points matched, which are numerous, when estimating the projection matrices and homographies between the images. The latter are used with the images of the absolute conic to formulate a system of non-linear equations (self-calibration equations depend on the number of matched pairs). Finally, the intrinsic parameters of the camera can be obtained by minimizing a non-linear cost function in a two-step procedure: initialization and optimization. Experiment results show the robustness of our algorithms in terms of stability and convergence.\",\"PeriodicalId\":39750,\"journal\":{\"name\":\"Machine Graphics and Vision\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Graphics and Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22630/mgv.2014.23.1.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Graphics and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22630/mgv.2014.23.1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于未知平面场景的变内参数CCD相机自标定方法。该方法的优点是减少了估计所用相机参数所需的图像数量(两张图像)。此外,自校准方程与匹配点的数量(非常多且易于检测)有关,而不是与图像的数量有关,因为使用大量图像需要很高的计算时间。另一方面,在估计图像之间的投影矩阵和同构时,我们基于匹配的点,这些点是众多的。后者与绝对二次曲线的图像一起形成非线性方程组(自校准方程取决于匹配对的数量)。最后,通过初始化和优化两步,最小化非线性代价函数,得到相机的内在参数。实验结果表明,该算法在稳定性和收敛性方面具有较好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust method for camera self-calibration by an unkown planar scene
In this paper we present a self-calibration method for a CCD camera with varying intrinsic parameters based on an unknown planar scene. The advantage of our method is reducing the number of images (two images) needed to estimate the parameters of the camera used. Moreover, self-calibration equations are related to the number of points matched (very numerous and easy to detect) rather than to the number of images, since the use of a large number of images requires high computation time. On the other hand, we base on the points matched, which are numerous, when estimating the projection matrices and homographies between the images. The latter are used with the images of the absolute conic to formulate a system of non-linear equations (self-calibration equations depend on the number of matched pairs). Finally, the intrinsic parameters of the camera can be obtained by minimizing a non-linear cost function in a two-step procedure: initialization and optimization. Experiment results show the robustness of our algorithms in terms of stability and convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine Graphics and Vision
Machine Graphics and Vision Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
0.40
自引率
0.00%
发文量
1
期刊介绍: Machine GRAPHICS & VISION (MGV) is a refereed international journal, published quarterly, providing a scientific exchange forum and an authoritative source of information in the field of, in general, pictorial information exchange between computers and their environment, including applications of visual and graphical computer systems. The journal concentrates on theoretical and computational models underlying computer generated, analysed, or otherwise processed imagery, in particular: - image processing - scene analysis, modeling, and understanding - machine vision - pattern matching and pattern recognition - image synthesis, including three-dimensional imaging and solid modeling
期刊最新文献
Use of virtual reality to facilitate engineer training in the aerospace industry An efficient pedestrian attributes recognition system under challenging conditions Performance evaluation of Machine Learning models to predict heart attack Lung and colon cancer detection from CT images using Deep Learning Riesz-Laplace Wavelet Transform and PCNN Based Image Fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1