网络人群中流行病快速监测的资源优化配置

P. D. Giamberardino, D. Iacoviello, F. Papa
{"title":"网络人群中流行病快速监测的资源优化配置","authors":"P. D. Giamberardino, D. Iacoviello, F. Papa","doi":"10.5220/0011299300003271","DOIUrl":null,"url":null,"abstract":"The COVID-19 pandemic highlighted the fragility of the world in addressing a global health threat. The available resources of the pre-pandemic national health systems were inadequate to cope with the huge number of infected subjects needing health care and with the rapidity of the infection spread characterizing the COVID-19 outbreak. Indeed, an adequate allocation of the resources could produce in principle a strong reduction of the infection spread and of the hospital burden, preventing the collapse of the health system. In this work, taking inspiration from the COVID-19 and the difficulties in facing the emergency, an optimal problem of resource allocation is formulated on the basis of an ODE multi-group model composed by a network of SEIR-like submodels. The multi-group structure allows to differentiate the epidemic response of different populations or of various subgroups in the same population. In fact, an epidemic does not affect all populations in the same way, and even within the same population there can be epidemiological differences, like the susceptibility to the virus, the level of infectivity of the infectious subjects and the recovery from the disease. The subgroups are selected within the total population based on some peculiar characteristics, like for instance age, work, social condition, geographical position, etc., and they are connected by a network of contacts that allows the virus circulation within and among the groups. The proposed optimal control problem aims at defining a suitable monitoring campaign that is able to optimally allocate the number of swab tests between the subgroups of the population in order to reduce the number of infected patients (especially the most fragile ones) so reducing the epidemic impact on the health system. The proposed monitoring strategy can be applied both during the most critical phases of the emergency and in endemic conditions, when an active surveillance could be crucial for preventing the contagion rise.","PeriodicalId":6436,"journal":{"name":"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)","volume":"16 1","pages":"616-625"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal Resource Allocation for Fast Epidemic Monitoring in Networked Populations\",\"authors\":\"P. D. Giamberardino, D. Iacoviello, F. Papa\",\"doi\":\"10.5220/0011299300003271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The COVID-19 pandemic highlighted the fragility of the world in addressing a global health threat. The available resources of the pre-pandemic national health systems were inadequate to cope with the huge number of infected subjects needing health care and with the rapidity of the infection spread characterizing the COVID-19 outbreak. Indeed, an adequate allocation of the resources could produce in principle a strong reduction of the infection spread and of the hospital burden, preventing the collapse of the health system. In this work, taking inspiration from the COVID-19 and the difficulties in facing the emergency, an optimal problem of resource allocation is formulated on the basis of an ODE multi-group model composed by a network of SEIR-like submodels. The multi-group structure allows to differentiate the epidemic response of different populations or of various subgroups in the same population. In fact, an epidemic does not affect all populations in the same way, and even within the same population there can be epidemiological differences, like the susceptibility to the virus, the level of infectivity of the infectious subjects and the recovery from the disease. The subgroups are selected within the total population based on some peculiar characteristics, like for instance age, work, social condition, geographical position, etc., and they are connected by a network of contacts that allows the virus circulation within and among the groups. The proposed optimal control problem aims at defining a suitable monitoring campaign that is able to optimally allocate the number of swab tests between the subgroups of the population in order to reduce the number of infected patients (especially the most fragile ones) so reducing the epidemic impact on the health system. The proposed monitoring strategy can be applied both during the most critical phases of the emergency and in endemic conditions, when an active surveillance could be crucial for preventing the contagion rise.\",\"PeriodicalId\":6436,\"journal\":{\"name\":\"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)\",\"volume\":\"16 1\",\"pages\":\"616-625\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0011299300003271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0011299300003271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

2019冠状病毒病大流行凸显了世界在应对全球卫生威胁方面的脆弱性。大流行前国家卫生系统的现有资源不足以应对需要卫生保健的大量感染者,以及COVID-19疫情特征的感染传播速度。事实上,资源的适当分配原则上可以大大减少感染的传播和医院的负担,防止卫生系统的崩溃。本文以新冠肺炎疫情为启示,结合突发事件应对的困难,基于类seir子模型网络构成的ODE多组模型,提出了一个资源最优分配问题。多群体结构允许区分不同人群或同一人群中不同亚群体的流行病反应。事实上,流行病对所有人群的影响并不相同,即使在同一人群中,也可能存在流行病学上的差异,比如对病毒的易感性、受感染者的传染性水平以及从疾病中恢复的程度。这些子群体是根据年龄、工作、社会条件、地理位置等一些特殊特征在总人口中选出的,它们通过一个接触网络联系在一起,使病毒能够在群体内部和群体之间传播。所提出的最优控制问题旨在确定一种合适的监测运动,能够在人口的子群体之间最佳地分配拭子测试的数量,以减少感染患者的数量(特别是最脆弱的患者),从而减少流行病对卫生系统的影响。拟议的监测战略既可以应用于紧急情况的最关键阶段,也可以应用于流行情况,在这种情况下,主动监测对于防止传染上升至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal Resource Allocation for Fast Epidemic Monitoring in Networked Populations
The COVID-19 pandemic highlighted the fragility of the world in addressing a global health threat. The available resources of the pre-pandemic national health systems were inadequate to cope with the huge number of infected subjects needing health care and with the rapidity of the infection spread characterizing the COVID-19 outbreak. Indeed, an adequate allocation of the resources could produce in principle a strong reduction of the infection spread and of the hospital burden, preventing the collapse of the health system. In this work, taking inspiration from the COVID-19 and the difficulties in facing the emergency, an optimal problem of resource allocation is formulated on the basis of an ODE multi-group model composed by a network of SEIR-like submodels. The multi-group structure allows to differentiate the epidemic response of different populations or of various subgroups in the same population. In fact, an epidemic does not affect all populations in the same way, and even within the same population there can be epidemiological differences, like the susceptibility to the virus, the level of infectivity of the infectious subjects and the recovery from the disease. The subgroups are selected within the total population based on some peculiar characteristics, like for instance age, work, social condition, geographical position, etc., and they are connected by a network of contacts that allows the virus circulation within and among the groups. The proposed optimal control problem aims at defining a suitable monitoring campaign that is able to optimally allocate the number of swab tests between the subgroups of the population in order to reduce the number of infected patients (especially the most fragile ones) so reducing the epidemic impact on the health system. The proposed monitoring strategy can be applied both during the most critical phases of the emergency and in endemic conditions, when an active surveillance could be crucial for preventing the contagion rise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Informatics in Control, Automation and Robotics: 18th International Conference, ICINCO 2021 Lieusaint - Paris, France, July 6–8, 2021, Revised Selected Papers A Digital Twin Setup for Safety-aware Optimization of a Cyber-physical System Segmenting Maps by Analyzing Free and Occupied Regions with Voronoi Diagrams Efficient Verification of CPA Lyapunov Functions Open-loop Control of a Soft Arm in Throwing Tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1