数据同化中的数值线性代数

Q1 Mathematics GAMM Mitteilungen Pub Date : 2020-09-10 DOI:10.1002/gamm.202000014
Melina A. Freitag
{"title":"数据同化中的数值线性代数","authors":"Melina A. Freitag","doi":"10.1002/gamm.202000014","DOIUrl":null,"url":null,"abstract":"<p>Data assimilation is a method that combines observations (ie, real world data) of a state of a system with model output for that system in order to improve the estimate of the state of the system and thereby the model output. The model is usually represented by a discretized partial differential equation. The data assimilation problem can be formulated as a large scale Bayesian inverse problem. Based on this interpretation we will derive the most important variational and sequential data assimilation approaches, in particular three-dimensional and four-dimensional variational data assimilation (3D-Var and 4D-Var) and the Kalman filter. We will then consider more advanced methods which are extensions of the Kalman filter and variational data assimilation and pay particular attention to their advantages and disadvantages. The data assimilation problem usually results in a very large optimization problem and/or a very large linear system to solve (due to inclusion of time and space dimensions). Therefore, the second part of this article aims to review advances and challenges, in particular from the numerical linear algebra perspective, within the various data assimilation approaches.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"43 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gamm.202000014","citationCount":"5","resultStr":"{\"title\":\"Numerical linear algebra in data assimilation\",\"authors\":\"Melina A. Freitag\",\"doi\":\"10.1002/gamm.202000014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Data assimilation is a method that combines observations (ie, real world data) of a state of a system with model output for that system in order to improve the estimate of the state of the system and thereby the model output. The model is usually represented by a discretized partial differential equation. The data assimilation problem can be formulated as a large scale Bayesian inverse problem. Based on this interpretation we will derive the most important variational and sequential data assimilation approaches, in particular three-dimensional and four-dimensional variational data assimilation (3D-Var and 4D-Var) and the Kalman filter. We will then consider more advanced methods which are extensions of the Kalman filter and variational data assimilation and pay particular attention to their advantages and disadvantages. The data assimilation problem usually results in a very large optimization problem and/or a very large linear system to solve (due to inclusion of time and space dimensions). Therefore, the second part of this article aims to review advances and challenges, in particular from the numerical linear algebra perspective, within the various data assimilation approaches.</p>\",\"PeriodicalId\":53634,\"journal\":{\"name\":\"GAMM Mitteilungen\",\"volume\":\"43 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gamm.202000014\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GAMM Mitteilungen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202000014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GAMM Mitteilungen","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202000014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

摘要

数据同化是一种将系统状态的观测(即真实世界的数据)与该系统的模型输出相结合的方法,目的是改进对系统状态的估计,从而改进模型输出。该模型通常用离散化的偏微分方程表示。数据同化问题可以表述为一个大规模的贝叶斯反问题。基于这种解释,我们将推导出最重要的变分和顺序数据同化方法,特别是三维和四维变分数据同化(3D-Var和4D-Var)和卡尔曼滤波。然后,我们将考虑更先进的方法,即卡尔曼滤波和变分数据同化的扩展,并特别注意它们的优点和缺点。数据同化问题通常会导致一个非常大的优化问题和/或一个非常大的线性系统需要解决(由于包含时间和空间维度)。因此,本文的第二部分旨在回顾各种数据同化方法的进展和挑战,特别是从数值线性代数的角度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical linear algebra in data assimilation

Data assimilation is a method that combines observations (ie, real world data) of a state of a system with model output for that system in order to improve the estimate of the state of the system and thereby the model output. The model is usually represented by a discretized partial differential equation. The data assimilation problem can be formulated as a large scale Bayesian inverse problem. Based on this interpretation we will derive the most important variational and sequential data assimilation approaches, in particular three-dimensional and four-dimensional variational data assimilation (3D-Var and 4D-Var) and the Kalman filter. We will then consider more advanced methods which are extensions of the Kalman filter and variational data assimilation and pay particular attention to their advantages and disadvantages. The data assimilation problem usually results in a very large optimization problem and/or a very large linear system to solve (due to inclusion of time and space dimensions). Therefore, the second part of this article aims to review advances and challenges, in particular from the numerical linear algebra perspective, within the various data assimilation approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GAMM Mitteilungen
GAMM Mitteilungen Mathematics-Applied Mathematics
CiteScore
8.80
自引率
0.00%
发文量
23
期刊最新文献
Issue Information Regularizations of forward-backward parabolic PDEs Parallel two-scale finite element implementation of a system with varying microstructure Issue Information Low Mach number limit of a diffuse interface model for two-phase flows of compressible viscous fluids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1