Alberto Isasi-Andrieu, Estíbaliz Garrote-Contreras, P. Iriondo, David Aldama-Gant, A. Galdran
{"title":"自动铬表面检测的偏转设置定义","authors":"Alberto Isasi-Andrieu, Estíbaliz Garrote-Contreras, P. Iriondo, David Aldama-Gant, A. Galdran","doi":"10.1109/ETFA.2017.8247756","DOIUrl":null,"url":null,"abstract":"A recurrent problem in the industrial sector is the quality control and surface inspection of reflecting pieces with non-planar surfaces. This is an extended and non-solved problem because it is related not only to the material itself but also to the coating. This problem appears in a wide spectrum of industrial sectors such as automation, aeronautics or orthopaedics. In recent years, a new imaging technology called deflectometry has been introduced in the field of surface inspection for industrial applications. This technology features a high resolution camera and a dedicated illumination system-based on displaying fringe patterns in a monitor-allowing the detection of irregularities in surfaces. However, the introduction of this technology into automated quality control systems remains a challenging task, due to the wide range of defects and shapes that can appear. It becomes thus necessary to characterize different types of errors and their associated detection setups. In this paper we propose a novel methodology to define and analyse the best setup for each pattern. We also explore an efficient technique to maximize the number of different pieces inspected without modifying the setup of the acquisition system. Experimental results show that the presented methodology defines an inspection method that can be installed in an automatic quality control device for non-planar surfaces analysis of manufactured products.","PeriodicalId":6522,"journal":{"name":"2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":"397 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deflectometry setup definition for automatic chrome surface inspection\",\"authors\":\"Alberto Isasi-Andrieu, Estíbaliz Garrote-Contreras, P. Iriondo, David Aldama-Gant, A. Galdran\",\"doi\":\"10.1109/ETFA.2017.8247756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A recurrent problem in the industrial sector is the quality control and surface inspection of reflecting pieces with non-planar surfaces. This is an extended and non-solved problem because it is related not only to the material itself but also to the coating. This problem appears in a wide spectrum of industrial sectors such as automation, aeronautics or orthopaedics. In recent years, a new imaging technology called deflectometry has been introduced in the field of surface inspection for industrial applications. This technology features a high resolution camera and a dedicated illumination system-based on displaying fringe patterns in a monitor-allowing the detection of irregularities in surfaces. However, the introduction of this technology into automated quality control systems remains a challenging task, due to the wide range of defects and shapes that can appear. It becomes thus necessary to characterize different types of errors and their associated detection setups. In this paper we propose a novel methodology to define and analyse the best setup for each pattern. We also explore an efficient technique to maximize the number of different pieces inspected without modifying the setup of the acquisition system. Experimental results show that the presented methodology defines an inspection method that can be installed in an automatic quality control device for non-planar surfaces analysis of manufactured products.\",\"PeriodicalId\":6522,\"journal\":{\"name\":\"2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"volume\":\"397 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2017.8247756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2017.8247756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deflectometry setup definition for automatic chrome surface inspection
A recurrent problem in the industrial sector is the quality control and surface inspection of reflecting pieces with non-planar surfaces. This is an extended and non-solved problem because it is related not only to the material itself but also to the coating. This problem appears in a wide spectrum of industrial sectors such as automation, aeronautics or orthopaedics. In recent years, a new imaging technology called deflectometry has been introduced in the field of surface inspection for industrial applications. This technology features a high resolution camera and a dedicated illumination system-based on displaying fringe patterns in a monitor-allowing the detection of irregularities in surfaces. However, the introduction of this technology into automated quality control systems remains a challenging task, due to the wide range of defects and shapes that can appear. It becomes thus necessary to characterize different types of errors and their associated detection setups. In this paper we propose a novel methodology to define and analyse the best setup for each pattern. We also explore an efficient technique to maximize the number of different pieces inspected without modifying the setup of the acquisition system. Experimental results show that the presented methodology defines an inspection method that can be installed in an automatic quality control device for non-planar surfaces analysis of manufactured products.