多级交流电池储能系统的优化框架

IF 1 4区 工程技术 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering Pub Date : 2023-06-25 DOI:10.1109/COMPEL52896.2023.10220997
Alireza Ramyar, Jason B. Siegel, A. Avestruz
{"title":"多级交流电池储能系统的优化框架","authors":"Alireza Ramyar, Jason B. Siegel, A. Avestruz","doi":"10.1109/COMPEL52896.2023.10220997","DOIUrl":null,"url":null,"abstract":"Battery energy storage systems (BESS) play an essential role in modern grids by supporting renewable power systems, improving grid power quality through voltage and frequency regulation, and supporting electric vehicle (EV) charging stations. At the same time, and with the rapid growth of EVs, an enormous number of EV batteries will be retired soon. These second-use EV batteries still have approximately 80% capacity and can be utilized in stationary applications like grid-connected BESSs to reduce the emissions from producing new batteries for energy storage systems. Directly producing multilevel AC from batteries reduces cost by eliminating the need for an explicit conventional inverter. In this paper, a framework is presented for optimizing the multilevel integration of power processing in BESSs, which is particularly applicable to BESSs with heterogeneous second-use batteries.","PeriodicalId":55233,"journal":{"name":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","volume":"23 1","pages":"1-8"},"PeriodicalIF":1.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Framework for Optimizing Multilevel AC Battery Energy Storage Systems\",\"authors\":\"Alireza Ramyar, Jason B. Siegel, A. Avestruz\",\"doi\":\"10.1109/COMPEL52896.2023.10220997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Battery energy storage systems (BESS) play an essential role in modern grids by supporting renewable power systems, improving grid power quality through voltage and frequency regulation, and supporting electric vehicle (EV) charging stations. At the same time, and with the rapid growth of EVs, an enormous number of EV batteries will be retired soon. These second-use EV batteries still have approximately 80% capacity and can be utilized in stationary applications like grid-connected BESSs to reduce the emissions from producing new batteries for energy storage systems. Directly producing multilevel AC from batteries reduces cost by eliminating the need for an explicit conventional inverter. In this paper, a framework is presented for optimizing the multilevel integration of power processing in BESSs, which is particularly applicable to BESSs with heterogeneous second-use batteries.\",\"PeriodicalId\":55233,\"journal\":{\"name\":\"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering\",\"volume\":\"23 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPEL52896.2023.10220997\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/COMPEL52896.2023.10220997","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

电池储能系统(BESS)支持可再生能源系统,通过电压和频率调节改善电网电能质量,并支持电动汽车(EV)充电站,在现代电网中发挥着至关重要的作用。与此同时,随着电动汽车的快速发展,大量的电动汽车电池将很快退役。这些二次使用的电动汽车电池仍然有大约80%的容量,可以用于固定应用,如并网bess,以减少生产用于储能系统的新电池的排放。直接从电池中产生多电平交流电,通过消除对明确的传统逆变器的需要来降低成本。本文提出了一种优化bess多级集成电源处理的框架,该框架特别适用于异构二次电池的bess。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Framework for Optimizing Multilevel AC Battery Energy Storage Systems
Battery energy storage systems (BESS) play an essential role in modern grids by supporting renewable power systems, improving grid power quality through voltage and frequency regulation, and supporting electric vehicle (EV) charging stations. At the same time, and with the rapid growth of EVs, an enormous number of EV batteries will be retired soon. These second-use EV batteries still have approximately 80% capacity and can be utilized in stationary applications like grid-connected BESSs to reduce the emissions from producing new batteries for energy storage systems. Directly producing multilevel AC from batteries reduces cost by eliminating the need for an explicit conventional inverter. In this paper, a framework is presented for optimizing the multilevel integration of power processing in BESSs, which is particularly applicable to BESSs with heterogeneous second-use batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
124
审稿时长
4.2 months
期刊介绍: COMPEL exists for the discussion and dissemination of computational and analytical methods in electrical and electronic engineering. The main emphasis of papers should be on methods and new techniques, or the application of existing techniques in a novel way. Whilst papers with immediate application to particular engineering problems are welcome, so too are papers that form a basis for further development in the area of study. A double-blind review process ensures the content''s validity and relevance.
期刊最新文献
Refining the physical description of charge trapping and detrapping in a transport model for dielectrics using an optimization algorithm Asymmetric air gap fault detection in linear permanent magnet Vernier machines Development and comparison of double-stator memory machines with parallel hybrid magnets Micromagnetics and multiscale hysteresis simulations of permanent magnets Optimization design of insulation structure of multiwinding high-frequency transformer based on response surface method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1