从单个图像预测设计形式和功能

K. M. Edwards, Vaishnavi L. Addala, Faez Ahmed
{"title":"从单个图像预测设计形式和功能","authors":"K. M. Edwards, Vaishnavi L. Addala, Faez Ahmed","doi":"10.1115/detc2021-71853","DOIUrl":null,"url":null,"abstract":"\n Estimating the form and functional performance of a design in the early stages can be crucial for a designer for effective ideation Humans have an innate ability to guess the size, shape, and type of a design from a single view. The brain fills in the unknowns in a fraction of a second. However, humans may struggle with estimating the performance of designs in the early stages of the design process without making prototypes or doing back-of-the-envelope calculations. In contrast, machines need information about the full 3D model of a design to understand its structure. Machines can estimate the performance using pre-defined rules, expensive numerical simulations, or machine learning models. In this paper, we show how information about the form and functional performance of a design can be estimated from a single image using machine learning methods. Specifically, we leverage the image-to-image translation method to predict multiple projections of an image-based design. We then train deep neural network models on the predicted projections to provide estimates of design performance. We demonstrate the effectiveness of our method by predicting the aerodynamic performance from images of aircraft models. To estimate ground truth aero-dynamic performance, we run CFD simulations for 4045 3D aircraft models from the ShapeNet dataset and use their lift-to-drag ratio as the performance metric. Our results show that single images do carry information for both form and functional performance. From a single image, we are able to produce six additional images of a design in different orientations, with an average Structural Similarity Index score of 0.872. We also find image-translation methods provide a promising direction in estimating the performance of design. Using multiple images of a design (gathered through image-translation) to predict design performance yields a recall value of 47%, which is 14% higher than a base guess, and 3% higher than using a single image. Our work identifies the potential and provides a framework for using a single image to predict the form and functional performance of a design during the early-stage design process. Our code and additional information about our work are available at http://decode.mit.edu/projects/formfunction/.","PeriodicalId":23602,"journal":{"name":"Volume 2: 41st Computers and Information in Engineering Conference (CIE)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design Form and Function Prediction From a Single Image\",\"authors\":\"K. M. Edwards, Vaishnavi L. Addala, Faez Ahmed\",\"doi\":\"10.1115/detc2021-71853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Estimating the form and functional performance of a design in the early stages can be crucial for a designer for effective ideation Humans have an innate ability to guess the size, shape, and type of a design from a single view. The brain fills in the unknowns in a fraction of a second. However, humans may struggle with estimating the performance of designs in the early stages of the design process without making prototypes or doing back-of-the-envelope calculations. In contrast, machines need information about the full 3D model of a design to understand its structure. Machines can estimate the performance using pre-defined rules, expensive numerical simulations, or machine learning models. In this paper, we show how information about the form and functional performance of a design can be estimated from a single image using machine learning methods. Specifically, we leverage the image-to-image translation method to predict multiple projections of an image-based design. We then train deep neural network models on the predicted projections to provide estimates of design performance. We demonstrate the effectiveness of our method by predicting the aerodynamic performance from images of aircraft models. To estimate ground truth aero-dynamic performance, we run CFD simulations for 4045 3D aircraft models from the ShapeNet dataset and use their lift-to-drag ratio as the performance metric. Our results show that single images do carry information for both form and functional performance. From a single image, we are able to produce six additional images of a design in different orientations, with an average Structural Similarity Index score of 0.872. We also find image-translation methods provide a promising direction in estimating the performance of design. Using multiple images of a design (gathered through image-translation) to predict design performance yields a recall value of 47%, which is 14% higher than a base guess, and 3% higher than using a single image. Our work identifies the potential and provides a framework for using a single image to predict the form and functional performance of a design during the early-stage design process. Our code and additional information about our work are available at http://decode.mit.edu/projects/formfunction/.\",\"PeriodicalId\":23602,\"journal\":{\"name\":\"Volume 2: 41st Computers and Information in Engineering Conference (CIE)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: 41st Computers and Information in Engineering Conference (CIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2021-71853\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 41st Computers and Information in Engineering Conference (CIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2021-71853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在早期阶段评估设计的形式和功能表现对于设计师有效构思至关重要。人类天生具有从单一视角猜测设计的大小、形状和类型的能力。大脑在几分之一秒内填补了未知。然而,在设计过程的早期阶段,如果没有制作原型或进行粗略的计算,人类可能很难估计设计的性能。相比之下,机器需要一个设计的完整3D模型的信息来理解它的结构。机器可以使用预定义的规则、昂贵的数值模拟或机器学习模型来估计性能。在本文中,我们展示了如何使用机器学习方法从单个图像中估计有关设计的形式和功能性能的信息。具体来说,我们利用图像到图像的转换方法来预测基于图像的设计的多个投影。然后,我们在预测的投影上训练深度神经网络模型,以提供设计性能的估计。通过对飞机模型图像进行气动性能预测,验证了该方法的有效性。为了评估地面真实空气动力学性能,我们对ShapeNet数据集中的4045架3D飞机模型进行了CFD模拟,并使用其升阻比作为性能指标。我们的研究结果表明,单个图像确实携带了形式和功能性能的信息。从单个图像中,我们能够在不同的方向上产生六个额外的设计图像,平均结构相似指数得分为0.872。我们还发现图像翻译方法为评估设计性能提供了一个有前途的方向。使用设计的多个图像(通过图像翻译收集)来预测设计性能产生47%的召回值,比基本猜测高14%,比使用单个图像高3%。我们的工作确定了潜力,并提供了一个框架,在早期设计过程中使用单个图像来预测设计的形式和功能性能。我们的代码和关于我们工作的其他信息可以在http://decode.mit.edu/projects/formfunction/上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design Form and Function Prediction From a Single Image
Estimating the form and functional performance of a design in the early stages can be crucial for a designer for effective ideation Humans have an innate ability to guess the size, shape, and type of a design from a single view. The brain fills in the unknowns in a fraction of a second. However, humans may struggle with estimating the performance of designs in the early stages of the design process without making prototypes or doing back-of-the-envelope calculations. In contrast, machines need information about the full 3D model of a design to understand its structure. Machines can estimate the performance using pre-defined rules, expensive numerical simulations, or machine learning models. In this paper, we show how information about the form and functional performance of a design can be estimated from a single image using machine learning methods. Specifically, we leverage the image-to-image translation method to predict multiple projections of an image-based design. We then train deep neural network models on the predicted projections to provide estimates of design performance. We demonstrate the effectiveness of our method by predicting the aerodynamic performance from images of aircraft models. To estimate ground truth aero-dynamic performance, we run CFD simulations for 4045 3D aircraft models from the ShapeNet dataset and use their lift-to-drag ratio as the performance metric. Our results show that single images do carry information for both form and functional performance. From a single image, we are able to produce six additional images of a design in different orientations, with an average Structural Similarity Index score of 0.872. We also find image-translation methods provide a promising direction in estimating the performance of design. Using multiple images of a design (gathered through image-translation) to predict design performance yields a recall value of 47%, which is 14% higher than a base guess, and 3% higher than using a single image. Our work identifies the potential and provides a framework for using a single image to predict the form and functional performance of a design during the early-stage design process. Our code and additional information about our work are available at http://decode.mit.edu/projects/formfunction/.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Bus Factor in Conceptual System Design: Protecting a Design Process Against Major Regional and World Events Exploration of the Digital Innovation Process in the Smart Product-Service System Optimized Torque Assistance During Walking With an Idealized Hip Exoskeleton An Algorithm for Partitioning Objects Into a Cube Skeleton and Segmented Shell Covers for Parallelized Additive Manufacturing Neurocognitive Effects of Incentivizing Students to Improve Performance Through Repeat Attempts in Design Settings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1