口语对话系统中基于注意的神经自然语言生成器的强化自适应

Q1 Arts and Humanities Dialogue and Discourse Pub Date : 2019-02-14 DOI:10.5087/DAD.2019.101
Matthieu Riou, B. Jabaian, Stéphane Huet, F. Lefèvre
{"title":"口语对话系统中基于注意的神经自然语言生成器的强化自适应","authors":"Matthieu Riou, B. Jabaian, Stéphane Huet, F. Lefèvre","doi":"10.5087/DAD.2019.101","DOIUrl":null,"url":null,"abstract":"Following some recent propositions to handle natural language generation in spoken dialogue systems with long short-term memory recurrent neural network models~\\citep{Wen2016a} we first investigate a variant thereof with the objective of a better integration of the attention subnetwork. Then our next objective is to propose and evaluate a framework to adapt the NLG module online through direct interactions with the users. When doing so the basic way is to ask the user to utter an alternative sentence to express a particular dialogue act. But then the system has to decide between using an automatic transcription or to ask for a manual transcription. To do so a reinforcement learning approach based on an adversarial bandit scheme is retained. We show that by defining appropriately the rewards as a linear combination of expected payoffs and costs of acquiring the new data provided by the user, a system design can balance between improving the system's performance towards a better match with the user's preferences and the burden associated with it. Then the actual benefits of this system is assessed with a human evaluation, showing that the addition of more diverse utterances allows to produce sentences more satisfying for the user.","PeriodicalId":37604,"journal":{"name":"Dialogue and Discourse","volume":"48 1","pages":"1-19"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Reinforcement adaptation of an attention-based neural natural language generator for spoken dialogue systems\",\"authors\":\"Matthieu Riou, B. Jabaian, Stéphane Huet, F. Lefèvre\",\"doi\":\"10.5087/DAD.2019.101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Following some recent propositions to handle natural language generation in spoken dialogue systems with long short-term memory recurrent neural network models~\\\\citep{Wen2016a} we first investigate a variant thereof with the objective of a better integration of the attention subnetwork. Then our next objective is to propose and evaluate a framework to adapt the NLG module online through direct interactions with the users. When doing so the basic way is to ask the user to utter an alternative sentence to express a particular dialogue act. But then the system has to decide between using an automatic transcription or to ask for a manual transcription. To do so a reinforcement learning approach based on an adversarial bandit scheme is retained. We show that by defining appropriately the rewards as a linear combination of expected payoffs and costs of acquiring the new data provided by the user, a system design can balance between improving the system's performance towards a better match with the user's preferences and the burden associated with it. Then the actual benefits of this system is assessed with a human evaluation, showing that the addition of more diverse utterances allows to produce sentences more satisfying for the user.\",\"PeriodicalId\":37604,\"journal\":{\"name\":\"Dialogue and Discourse\",\"volume\":\"48 1\",\"pages\":\"1-19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dialogue and Discourse\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5087/DAD.2019.101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dialogue and Discourse","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5087/DAD.2019.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 7

摘要

根据最近一些关于使用长短期记忆递归神经网络模型\citep{Wen2016a}处理口语对话系统中自然语言生成的命题,我们首先研究了其变体,目的是更好地整合注意子网。然后,我们的下一个目标是提出并评估一个框架,通过与用户的直接交互在线调整NLG模块。当这样做时,基本的方法是让用户说出一个替代句子来表达一个特定的对话行为。但是系统必须决定是使用自动转录还是要求手动转录。为此,保留了基于对抗性强盗方案的强化学习方法。我们表明,通过适当地将奖励定义为预期收益和获取用户提供的新数据的成本的线性组合,系统设计可以在改进系统性能以更好地匹配用户偏好和与之相关的负担之间取得平衡。然后用人类的评价来评估这个系统的实际好处,表明增加更多不同的话语可以产生更让用户满意的句子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reinforcement adaptation of an attention-based neural natural language generator for spoken dialogue systems
Following some recent propositions to handle natural language generation in spoken dialogue systems with long short-term memory recurrent neural network models~\citep{Wen2016a} we first investigate a variant thereof with the objective of a better integration of the attention subnetwork. Then our next objective is to propose and evaluate a framework to adapt the NLG module online through direct interactions with the users. When doing so the basic way is to ask the user to utter an alternative sentence to express a particular dialogue act. But then the system has to decide between using an automatic transcription or to ask for a manual transcription. To do so a reinforcement learning approach based on an adversarial bandit scheme is retained. We show that by defining appropriately the rewards as a linear combination of expected payoffs and costs of acquiring the new data provided by the user, a system design can balance between improving the system's performance towards a better match with the user's preferences and the burden associated with it. Then the actual benefits of this system is assessed with a human evaluation, showing that the addition of more diverse utterances allows to produce sentences more satisfying for the user.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Dialogue and Discourse
Dialogue and Discourse Arts and Humanities-Language and Linguistics
CiteScore
1.90
自引率
0.00%
发文量
7
审稿时长
12 weeks
期刊介绍: D&D seeks previously unpublished, high quality articles on the analysis of discourse and dialogue that contain -experimental and/or theoretical studies related to the construction, representation, and maintenance of (linguistic) context -linguistic analysis of phenomena characteristic of discourse and/or dialogue (including, but not limited to: reference and anaphora, presupposition and accommodation, topicality and salience, implicature, ---discourse structure and rhetorical relations, discourse markers and particles, the semantics and -pragmatics of dialogue acts, questions, imperatives, non-sentential utterances, intonation, and meta--communicative phenomena such as repair and grounding) -experimental and/or theoretical studies of agents'' information states and their dynamics in conversational interaction -new analytical frameworks that advance theoretical studies of discourse and dialogue -research on systems performing coreference resolution, discourse structure parsing, event and temporal -structure, and reference resolution in multimodal communication -experimental and/or theoretical results yielding new insight into non-linguistic interaction in -communication -work on natural language understanding (including spoken language understanding), dialogue management, -reasoning, and natural language generation (including text-to-speech) in dialogue systems -work related to the design and engineering of dialogue systems (including, but not limited to: -evaluation, usability design and testing, rapid application deployment, embodied agents, affect detection, -mixed-initiative, adaptation, and user modeling). -extremely well-written surveys of existing work. Highest priority is given to research reports that are specifically written for a multidisciplinary audience. The audience is primarily researchers on discourse and dialogue and its associated fields, including computer scientists, linguists, psychologists, philosophers, roboticists, sociologists.
期刊最新文献
The Conversational Discourse Unit: Identification and Its Role in Conversational Turn-taking Management Exploring the Sensitivity to Alternative Signals of Coherence Relations Scoring Coreference Chains with Split-Antecedent Anaphors Form and Function of Connectives in Chinese Conversational Speech Bullshit, Pragmatic Deception, and Natural Language Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1