{"title":"两幅重叠无人机图像的相对旋转","authors":"M. Tjahjadi, Fransisca Agust","doi":"10.11591/eecsi.v5.1681","DOIUrl":null,"url":null,"abstract":"In this paper, we study the influence of varying baseline components on the accuracy of a relative rotation between two overlapping aerial images taken form UAV flight. The case is relevant when mosaicking UAV's aerial images by registering each individual image. Geotagged images facilitated by a navigational grade GPS receiver on board inform the camera position when taking pictures. However, these low accuracies of geographical coordinates encoded in an EXIF format are unreliable to depict baseline vector components between subsequent overlapping images. This research investigates these influences on the stability of rotation elements when the vector components are entered into a standard coplanarity condition equation to determine the relative rotation of the stereo images. Assuming a nadir looking camera on board while the UAV platform is flying at a constant height, the resulted vector directions are utilized to constraint the coplanarity equation. A detailed analysis of each variation is given. Our experiments based on real datasets confirm that the relative rotation between two successive overlapping image is practically unaffected by the accuracy of positioning method. Furthermore, the coplanarity constraint is invariant with respect to a translation along the baseline of the aerial stereo images.","PeriodicalId":20498,"journal":{"name":"Proceeding of the Electrical Engineering Computer Science and Informatics","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Relative Rotation between Two Overlapping UAV's Images\",\"authors\":\"M. Tjahjadi, Fransisca Agust\",\"doi\":\"10.11591/eecsi.v5.1681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the influence of varying baseline components on the accuracy of a relative rotation between two overlapping aerial images taken form UAV flight. The case is relevant when mosaicking UAV's aerial images by registering each individual image. Geotagged images facilitated by a navigational grade GPS receiver on board inform the camera position when taking pictures. However, these low accuracies of geographical coordinates encoded in an EXIF format are unreliable to depict baseline vector components between subsequent overlapping images. This research investigates these influences on the stability of rotation elements when the vector components are entered into a standard coplanarity condition equation to determine the relative rotation of the stereo images. Assuming a nadir looking camera on board while the UAV platform is flying at a constant height, the resulted vector directions are utilized to constraint the coplanarity equation. A detailed analysis of each variation is given. Our experiments based on real datasets confirm that the relative rotation between two successive overlapping image is practically unaffected by the accuracy of positioning method. Furthermore, the coplanarity constraint is invariant with respect to a translation along the baseline of the aerial stereo images.\",\"PeriodicalId\":20498,\"journal\":{\"name\":\"Proceeding of the Electrical Engineering Computer Science and Informatics\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceeding of the Electrical Engineering Computer Science and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/eecsi.v5.1681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of the Electrical Engineering Computer Science and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/eecsi.v5.1681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Relative Rotation between Two Overlapping UAV's Images
In this paper, we study the influence of varying baseline components on the accuracy of a relative rotation between two overlapping aerial images taken form UAV flight. The case is relevant when mosaicking UAV's aerial images by registering each individual image. Geotagged images facilitated by a navigational grade GPS receiver on board inform the camera position when taking pictures. However, these low accuracies of geographical coordinates encoded in an EXIF format are unreliable to depict baseline vector components between subsequent overlapping images. This research investigates these influences on the stability of rotation elements when the vector components are entered into a standard coplanarity condition equation to determine the relative rotation of the stereo images. Assuming a nadir looking camera on board while the UAV platform is flying at a constant height, the resulted vector directions are utilized to constraint the coplanarity equation. A detailed analysis of each variation is given. Our experiments based on real datasets confirm that the relative rotation between two successive overlapping image is practically unaffected by the accuracy of positioning method. Furthermore, the coplanarity constraint is invariant with respect to a translation along the baseline of the aerial stereo images.