管理和分析学生学习数据:一个基于python的edX解决方案

Vita Lampietti, Anindya Roy, Sheryl Barnes
{"title":"管理和分析学生学习数据:一个基于python的edX解决方案","authors":"Vita Lampietti, Anindya Roy, Sheryl Barnes","doi":"10.1145/3231644.3231706","DOIUrl":null,"url":null,"abstract":"Online learning platforms, such as edX, generate usage statistics data that can be valuable to educators. However, handling this raw data can prove challenging and time consuming for instructors and course designers. The raw data for the MIT courses running on the edX platform (MITx courses) are pre-processed and stored in a Google BigQuery database. We designed a tool based on Python and additional open-source Python packages such as Jupyter Notebook, to enable instructors to analyze their student data easily and securely. We expect that instructors would be encouraged to adopt more evidence-based teaching practices based on their interaction with the data.","PeriodicalId":20634,"journal":{"name":"Proceedings of the Fifth Annual ACM Conference on Learning at Scale","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Managing and analyzing student learning data: a python-based solution for edX\",\"authors\":\"Vita Lampietti, Anindya Roy, Sheryl Barnes\",\"doi\":\"10.1145/3231644.3231706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online learning platforms, such as edX, generate usage statistics data that can be valuable to educators. However, handling this raw data can prove challenging and time consuming for instructors and course designers. The raw data for the MIT courses running on the edX platform (MITx courses) are pre-processed and stored in a Google BigQuery database. We designed a tool based on Python and additional open-source Python packages such as Jupyter Notebook, to enable instructors to analyze their student data easily and securely. We expect that instructors would be encouraged to adopt more evidence-based teaching practices based on their interaction with the data.\",\"PeriodicalId\":20634,\"journal\":{\"name\":\"Proceedings of the Fifth Annual ACM Conference on Learning at Scale\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth Annual ACM Conference on Learning at Scale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3231644.3231706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth Annual ACM Conference on Learning at Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3231644.3231706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

edX等在线学习平台生成的使用统计数据对教育工作者很有价值。然而,对于教师和课程设计者来说,处理这些原始数据可能是具有挑战性和耗时的。在edX平台上运行的MIT课程(MITx课程)的原始数据经过预处理并存储在谷歌BigQuery数据库中。我们设计了一个基于Python和其他开源Python包(如Jupyter Notebook)的工具,使教师能够轻松安全地分析学生数据。我们期望教师能够在与数据互动的基础上采用更多基于证据的教学实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Managing and analyzing student learning data: a python-based solution for edX
Online learning platforms, such as edX, generate usage statistics data that can be valuable to educators. However, handling this raw data can prove challenging and time consuming for instructors and course designers. The raw data for the MIT courses running on the edX platform (MITx courses) are pre-processed and stored in a Google BigQuery database. We designed a tool based on Python and additional open-source Python packages such as Jupyter Notebook, to enable instructors to analyze their student data easily and securely. We expect that instructors would be encouraged to adopt more evidence-based teaching practices based on their interaction with the data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multimedia learning principles at scale predict quiz performance How a data-driven course planning tool affects college students' GPA: evidence from two field experiments Team based assignments in MOOCs: results and observations Towards adapting to learners at scale: integrating MOOC and intelligent tutoring frameworks Docent
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1