{"title":"基于隐马尔可夫模型的相关高维数据流定向故障分类","authors":"Yan He, Yicheng Kang, F. Tsung, D. Xiang","doi":"10.1080/00224065.2023.2210320","DOIUrl":null,"url":null,"abstract":"Abstract Modern manufacturing systems are often installed with sensor networks which generate high-dimensional data at high velocity. These data streams offer valuable information about the industrial system’s real-time performance. If a shift occurs in the manufacturing process, fault diagnosis based on the data streams becomes a fundamental task as it identifies the affected data streams and provides insights into the root cause. Existing fault diagnostic methods either ignore the correlation between different streams or fail to determine the shift directions. In this paper, we propose a directional fault classification procedure that incorporates the between-stream correlations. We suggest a three-state hidden Markov model that captures the correlation structure and enables inference about the shift direction. We show that our procedure is optimal in the sense that it minimizes the expected number of false discoveries while controlling the proportion of missed signals at a desired level. We also propose a deconvolution-expectation-maximization (DEM) algorithm for estimating the model parameters and establish the asymptotic optimality for the data-driven version of our procedure. Numerical comparisons with an existing approach and an application to a semiconductor production study show that the proposed procedure works well in practice.","PeriodicalId":54769,"journal":{"name":"Journal of Quality Technology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Directional fault classification for correlated High-Dimensional data streams using hidden Markov models\",\"authors\":\"Yan He, Yicheng Kang, F. Tsung, D. Xiang\",\"doi\":\"10.1080/00224065.2023.2210320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Modern manufacturing systems are often installed with sensor networks which generate high-dimensional data at high velocity. These data streams offer valuable information about the industrial system’s real-time performance. If a shift occurs in the manufacturing process, fault diagnosis based on the data streams becomes a fundamental task as it identifies the affected data streams and provides insights into the root cause. Existing fault diagnostic methods either ignore the correlation between different streams or fail to determine the shift directions. In this paper, we propose a directional fault classification procedure that incorporates the between-stream correlations. We suggest a three-state hidden Markov model that captures the correlation structure and enables inference about the shift direction. We show that our procedure is optimal in the sense that it minimizes the expected number of false discoveries while controlling the proportion of missed signals at a desired level. We also propose a deconvolution-expectation-maximization (DEM) algorithm for estimating the model parameters and establish the asymptotic optimality for the data-driven version of our procedure. Numerical comparisons with an existing approach and an application to a semiconductor production study show that the proposed procedure works well in practice.\",\"PeriodicalId\":54769,\"journal\":{\"name\":\"Journal of Quality Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quality Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/00224065.2023.2210320\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quality Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00224065.2023.2210320","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Directional fault classification for correlated High-Dimensional data streams using hidden Markov models
Abstract Modern manufacturing systems are often installed with sensor networks which generate high-dimensional data at high velocity. These data streams offer valuable information about the industrial system’s real-time performance. If a shift occurs in the manufacturing process, fault diagnosis based on the data streams becomes a fundamental task as it identifies the affected data streams and provides insights into the root cause. Existing fault diagnostic methods either ignore the correlation between different streams or fail to determine the shift directions. In this paper, we propose a directional fault classification procedure that incorporates the between-stream correlations. We suggest a three-state hidden Markov model that captures the correlation structure and enables inference about the shift direction. We show that our procedure is optimal in the sense that it minimizes the expected number of false discoveries while controlling the proportion of missed signals at a desired level. We also propose a deconvolution-expectation-maximization (DEM) algorithm for estimating the model parameters and establish the asymptotic optimality for the data-driven version of our procedure. Numerical comparisons with an existing approach and an application to a semiconductor production study show that the proposed procedure works well in practice.
期刊介绍:
The objective of Journal of Quality Technology is to contribute to the technical advancement of the field of quality technology by publishing papers that emphasize the practical applicability of new techniques, instructive examples of the operation of existing techniques and results of historical researches. Expository, review, and tutorial papers are also acceptable if they are written in a style suitable for practicing engineers.
Sample our Mathematics & Statistics journals, sign in here to start your FREE access for 14 days