通过统计功率控制提高大型数据中心的容量

Guosai Wang, Shuhao Wang, Bing Luo, Weisong Shi, Yinghan Zhu, Wenjun Yang, Dianming Hu, Longbo Huang, Xin Jin, W. Xu
{"title":"通过统计功率控制提高大型数据中心的容量","authors":"Guosai Wang, Shuhao Wang, Bing Luo, Weisong Shi, Yinghan Zhu, Wenjun Yang, Dianming Hu, Longbo Huang, Xin Jin, W. Xu","doi":"10.1145/2901318.2901338","DOIUrl":null,"url":null,"abstract":"Given the high cost of large-scale data centers, an important design goal is to fully utilize available power resources to maximize the computing capacity. In this paper we present Ampere, a novel power management system for data centers to increase the computing capacity by over-provisioning the number of servers. Instead of doing power capping that degrades the performance of running jobs, we use a statistical control approach to implement dynamic power management by indirectly affecting the workload scheduling, which can enormously reduce the risk of power violations. Instead of being a part of the already over-complicated scheduler, Ampere only interacts with the scheduler with two basic APIs. Instead of power control on the rack level, we impose power constraint on the row level, which leads to more room for over provisioning. We have implemented and deployed Ampere in our production data center. Controlled experiments on 400+ servers show that by adding 17% servers, we can increase the throughput of the data center by 15%, leading to significant cost savings while bringing no disturbances to the job performance.","PeriodicalId":20737,"journal":{"name":"Proceedings of the Eleventh European Conference on Computer Systems","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Increasing large-scale data center capacity by statistical power control\",\"authors\":\"Guosai Wang, Shuhao Wang, Bing Luo, Weisong Shi, Yinghan Zhu, Wenjun Yang, Dianming Hu, Longbo Huang, Xin Jin, W. Xu\",\"doi\":\"10.1145/2901318.2901338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given the high cost of large-scale data centers, an important design goal is to fully utilize available power resources to maximize the computing capacity. In this paper we present Ampere, a novel power management system for data centers to increase the computing capacity by over-provisioning the number of servers. Instead of doing power capping that degrades the performance of running jobs, we use a statistical control approach to implement dynamic power management by indirectly affecting the workload scheduling, which can enormously reduce the risk of power violations. Instead of being a part of the already over-complicated scheduler, Ampere only interacts with the scheduler with two basic APIs. Instead of power control on the rack level, we impose power constraint on the row level, which leads to more room for over provisioning. We have implemented and deployed Ampere in our production data center. Controlled experiments on 400+ servers show that by adding 17% servers, we can increase the throughput of the data center by 15%, leading to significant cost savings while bringing no disturbances to the job performance.\",\"PeriodicalId\":20737,\"journal\":{\"name\":\"Proceedings of the Eleventh European Conference on Computer Systems\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eleventh European Conference on Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2901318.2901338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh European Conference on Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2901318.2901338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

考虑到大规模数据中心的高成本,一个重要的设计目标是充分利用可用的电力资源,以最大限度地提高计算能力。在本文中,我们提出了一种新的电源管理系统Ampere,用于数据中心通过过度配置服务器数量来增加计算能力。我们没有使用降低作业运行性能的功率上限,而是使用统计控制方法通过间接影响工作负载调度来实现动态电源管理,这可以极大地降低电源违规的风险。Ampere没有成为已经过于复杂的调度器的一部分,而是仅通过两个基本api与调度器交互。我们没有在机架级别上进行功率控制,而是在行级别上施加功率约束,这将为过度供应提供更多空间。我们已经在生产数据中心中实现并部署了Ampere。在400多台服务器上进行的控制实验表明,通过增加17%的服务器,我们可以将数据中心的吞吐量提高15%,从而在不影响工作性能的情况下显著节省成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Increasing large-scale data center capacity by statistical power control
Given the high cost of large-scale data centers, an important design goal is to fully utilize available power resources to maximize the computing capacity. In this paper we present Ampere, a novel power management system for data centers to increase the computing capacity by over-provisioning the number of servers. Instead of doing power capping that degrades the performance of running jobs, we use a statistical control approach to implement dynamic power management by indirectly affecting the workload scheduling, which can enormously reduce the risk of power violations. Instead of being a part of the already over-complicated scheduler, Ampere only interacts with the scheduler with two basic APIs. Instead of power control on the rack level, we impose power constraint on the row level, which leads to more room for over provisioning. We have implemented and deployed Ampere in our production data center. Controlled experiments on 400+ servers show that by adding 17% servers, we can increase the throughput of the data center by 15%, leading to significant cost savings while bringing no disturbances to the job performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EuroSys '22: Seventeenth European Conference on Computer Systems, Rennes, France, April 5 - 8, 2022 EuroSys '21: Sixteenth European Conference on Computer Systems, Online Event, United Kingdom, April 26-28, 2021 EuroSys '20: Fifteenth EuroSys Conference 2020, Heraklion, Greece, April 27-30, 2020 STRADS: a distributed framework for scheduled model parallel machine learning NChecker: saving mobile app developers from network disruptions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1