可持续能源蒸发冷却器中潜在替代材料的研究进展

Shiva Kumar, J. Singh, Jogendra Siyag, S. Rambhatla
{"title":"可持续能源蒸发冷却器中潜在替代材料的研究进展","authors":"Shiva Kumar, J. Singh, Jogendra Siyag, S. Rambhatla","doi":"10.1142/S2010132520300062","DOIUrl":null,"url":null,"abstract":"In hot climatic conditions, increased energy consumption toward cooling has led to the development of evaporative coolers. The performance of evaporative cooler depends on the various material and operating parameters. Type of material selected for cooling pad is the most important factor among them. In this study, various types of cooling pad materials have been discussed based on their potential benefits, influence on the cooling performance like characteristics wettability, porosity, water holding capacity and cost. It is seen that organic- and fiber-based materials have been extensively used, whereas the studies related to materials based on plastics and metals are limited. Ideal material properties to be possessed by a good pad material have been discussed. Prospects and future scope for further research have been identified. Hence, this review paper certainly throws some light on the selection criteria for a potential alternative evaporative cooling pad material that shows the maximum cooling performance and helps achieve sustainable cooling in buildings.","PeriodicalId":13757,"journal":{"name":"International Journal of Air-conditioning and Refrigeration","volume":"24 1","pages":"2030006"},"PeriodicalIF":0.8000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Potential Alternative Materials used in Evaporative Coolers for Sustainable Energy Applications: A Review\",\"authors\":\"Shiva Kumar, J. Singh, Jogendra Siyag, S. Rambhatla\",\"doi\":\"10.1142/S2010132520300062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In hot climatic conditions, increased energy consumption toward cooling has led to the development of evaporative coolers. The performance of evaporative cooler depends on the various material and operating parameters. Type of material selected for cooling pad is the most important factor among them. In this study, various types of cooling pad materials have been discussed based on their potential benefits, influence on the cooling performance like characteristics wettability, porosity, water holding capacity and cost. It is seen that organic- and fiber-based materials have been extensively used, whereas the studies related to materials based on plastics and metals are limited. Ideal material properties to be possessed by a good pad material have been discussed. Prospects and future scope for further research have been identified. Hence, this review paper certainly throws some light on the selection criteria for a potential alternative evaporative cooling pad material that shows the maximum cooling performance and helps achieve sustainable cooling in buildings.\",\"PeriodicalId\":13757,\"journal\":{\"name\":\"International Journal of Air-conditioning and Refrigeration\",\"volume\":\"24 1\",\"pages\":\"2030006\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Air-conditioning and Refrigeration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2010132520300062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Air-conditioning and Refrigeration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2010132520300062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 6

摘要

在炎热的气候条件下,对冷却的能源消耗增加导致了蒸发冷却器的发展。蒸发冷却器的性能取决于各种材料和操作参数。冷却垫选用的材料类型是其中最重要的因素。在本研究中,讨论了各种类型的冷却垫材料的潜在效益,对冷却性能的影响,如特性润湿性,孔隙率,保水能力和成本。可见,有机基材料和纤维基材料得到了广泛的应用,而塑料基材料和金属基材料的相关研究却很有限。讨论了一种好的衬垫材料应具有的理想材料性能。确定了进一步研究的前景和范围。因此,这篇综述论文无疑为潜在的替代蒸发冷却垫材料的选择标准提供了一些启示,这种材料可以显示出最大的冷却性能,并有助于实现建筑物的可持续冷却。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Potential Alternative Materials used in Evaporative Coolers for Sustainable Energy Applications: A Review
In hot climatic conditions, increased energy consumption toward cooling has led to the development of evaporative coolers. The performance of evaporative cooler depends on the various material and operating parameters. Type of material selected for cooling pad is the most important factor among them. In this study, various types of cooling pad materials have been discussed based on their potential benefits, influence on the cooling performance like characteristics wettability, porosity, water holding capacity and cost. It is seen that organic- and fiber-based materials have been extensively used, whereas the studies related to materials based on plastics and metals are limited. Ideal material properties to be possessed by a good pad material have been discussed. Prospects and future scope for further research have been identified. Hence, this review paper certainly throws some light on the selection criteria for a potential alternative evaporative cooling pad material that shows the maximum cooling performance and helps achieve sustainable cooling in buildings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
10.00%
发文量
0
期刊介绍: As the only international journal in the field of air-conditioning and refrigeration in Asia, IJACR reports researches on the equipments for controlling indoor environment and cooling/refrigeration. It includes broad range of applications and underlying theories including fluid dynamics, thermodynamics, heat transfer, and nano/bio-related technologies. In addition, it covers future energy technologies, such as fuel cell, wind turbine, solar cell/heat, geothermal energy and etc.
期刊最新文献
A review on thermochemical seasonal solar energy storage materials and modeling methods Parametric analysis of chiller plant energy consumption in a tropical climate Experimental investigation of ice slurry viscosity Performance enhancement and environmental analysis of vapor compression refrigeration system with dedicated mechanical subcooling Energy analysis of the integration of HRV and direct evaporative cooling for energy efficiency in buildings: a case study in Iraq
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1