{"title":"云边缘协同环境下物联网应用的成本优化微服务部署","authors":"Xiaoyuan Zhang, Bing Tang, Qing Yang, Wei Xu, Feiyan Guo","doi":"10.1109/CSCWD57460.2023.10152549","DOIUrl":null,"url":null,"abstract":"With the popularity of cloud native and DevOps, container technology is widely used and combined with microservices. The deployment of container-based microservices in distributed cloud-edge infrastructure requires suitable strategies to ensure the quality of service for users. However, the existing container orchestration tools cannot flexibly select the best deployment location according to the user’s cost budget, and are insufficient in personalized deployment solutions. From the perspective of application providers, this paper considers the location distribution of users, application dependencies, and server price differences, and proposes a genetic algorithm-based Internet-of-Things (IoT) application deployment strategy for personalized cost budgets. The application deployment problem is defined as an optimization problem that minimizes user service latency under cost constraints. This problem is an NP-hard problem, and genetic algorithm is introduced to solve the optimization problem effectively and improve the deployment efficiency. The proposed algorithm is compared with four baseline algorithms, Time-Greedy, Cost-Greedy, Random and PSO, using real datasets and some synthetic datasets. The results show that the proposed algorithm outperforms other competing baseline algorithms.","PeriodicalId":51008,"journal":{"name":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","volume":"64 1","pages":"873-878"},"PeriodicalIF":2.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cost-Optimized Microservice Deployment for IoT Application in Cloud-Edge Collaborative Environment\",\"authors\":\"Xiaoyuan Zhang, Bing Tang, Qing Yang, Wei Xu, Feiyan Guo\",\"doi\":\"10.1109/CSCWD57460.2023.10152549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the popularity of cloud native and DevOps, container technology is widely used and combined with microservices. The deployment of container-based microservices in distributed cloud-edge infrastructure requires suitable strategies to ensure the quality of service for users. However, the existing container orchestration tools cannot flexibly select the best deployment location according to the user’s cost budget, and are insufficient in personalized deployment solutions. From the perspective of application providers, this paper considers the location distribution of users, application dependencies, and server price differences, and proposes a genetic algorithm-based Internet-of-Things (IoT) application deployment strategy for personalized cost budgets. The application deployment problem is defined as an optimization problem that minimizes user service latency under cost constraints. This problem is an NP-hard problem, and genetic algorithm is introduced to solve the optimization problem effectively and improve the deployment efficiency. The proposed algorithm is compared with four baseline algorithms, Time-Greedy, Cost-Greedy, Random and PSO, using real datasets and some synthetic datasets. The results show that the proposed algorithm outperforms other competing baseline algorithms.\",\"PeriodicalId\":51008,\"journal\":{\"name\":\"Computer Supported Cooperative Work-The Journal of Collaborative Computing\",\"volume\":\"64 1\",\"pages\":\"873-878\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Supported Cooperative Work-The Journal of Collaborative Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCWD57460.2023.10152549\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/CSCWD57460.2023.10152549","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Cost-Optimized Microservice Deployment for IoT Application in Cloud-Edge Collaborative Environment
With the popularity of cloud native and DevOps, container technology is widely used and combined with microservices. The deployment of container-based microservices in distributed cloud-edge infrastructure requires suitable strategies to ensure the quality of service for users. However, the existing container orchestration tools cannot flexibly select the best deployment location according to the user’s cost budget, and are insufficient in personalized deployment solutions. From the perspective of application providers, this paper considers the location distribution of users, application dependencies, and server price differences, and proposes a genetic algorithm-based Internet-of-Things (IoT) application deployment strategy for personalized cost budgets. The application deployment problem is defined as an optimization problem that minimizes user service latency under cost constraints. This problem is an NP-hard problem, and genetic algorithm is introduced to solve the optimization problem effectively and improve the deployment efficiency. The proposed algorithm is compared with four baseline algorithms, Time-Greedy, Cost-Greedy, Random and PSO, using real datasets and some synthetic datasets. The results show that the proposed algorithm outperforms other competing baseline algorithms.
期刊介绍:
Computer Supported Cooperative Work (CSCW): The Journal of Collaborative Computing and Work Practices is devoted to innovative research in computer-supported cooperative work (CSCW). It provides an interdisciplinary and international forum for the debate and exchange of ideas concerning theoretical, practical, technical, and social issues in CSCW.
The CSCW Journal arose in response to the growing interest in the design, implementation and use of technical systems (including computing, information, and communications technologies) which support people working cooperatively, and its scope remains to encompass the multifarious aspects of research within CSCW and related areas.
The CSCW Journal focuses on research oriented towards the development of collaborative computing technologies on the basis of studies of actual cooperative work practices (where ‘work’ is used in the wider sense). That is, it welcomes in particular submissions that (a) report on findings from ethnographic or similar kinds of in-depth fieldwork of work practices with a view to their technological implications, (b) report on empirical evaluations of the use of extant or novel technical solutions under real-world conditions, and/or (c) develop technical or conceptual frameworks for practice-oriented computing research based on previous fieldwork and evaluations.