{"title":"双曲结理论","authors":"J. Purcell","doi":"10.1090/gsm/209","DOIUrl":null,"url":null,"abstract":"This book is an introduction to hyperbolic geometry in dimension three, and its applications to knot theory and to geometric problems arising in knot theory. It has three parts. The first part covers basic tools in hyperbolic geometry and geometric structures on 3-manifolds. The second part focuses on families of knots and links that have been amenable to study via hyperbolic geometry, particularly twist knots, 2-bridge knots, and alternating knots. It also develops geometric techniques used to study these families, such as angle structures and normal surfaces. The third part gives more detail on three important knot invariants that come directly from hyperbolic geometry, namely volume, canonical polyhedra, and the A-polynomial.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Hyperbolic Knot Theory\",\"authors\":\"J. Purcell\",\"doi\":\"10.1090/gsm/209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This book is an introduction to hyperbolic geometry in dimension three, and its applications to knot theory and to geometric problems arising in knot theory. It has three parts. The first part covers basic tools in hyperbolic geometry and geometric structures on 3-manifolds. The second part focuses on families of knots and links that have been amenable to study via hyperbolic geometry, particularly twist knots, 2-bridge knots, and alternating knots. It also develops geometric techniques used to study these families, such as angle structures and normal surfaces. The third part gives more detail on three important knot invariants that come directly from hyperbolic geometry, namely volume, canonical polyhedra, and the A-polynomial.\",\"PeriodicalId\":8454,\"journal\":{\"name\":\"arXiv: Geometric Topology\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/gsm/209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/gsm/209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This book is an introduction to hyperbolic geometry in dimension three, and its applications to knot theory and to geometric problems arising in knot theory. It has three parts. The first part covers basic tools in hyperbolic geometry and geometric structures on 3-manifolds. The second part focuses on families of knots and links that have been amenable to study via hyperbolic geometry, particularly twist knots, 2-bridge knots, and alternating knots. It also develops geometric techniques used to study these families, such as angle structures and normal surfaces. The third part gives more detail on three important knot invariants that come directly from hyperbolic geometry, namely volume, canonical polyhedra, and the A-polynomial.