离散矩阵/张量分解的R包

Koki Tsuyuzaki
{"title":"离散矩阵/张量分解的R包","authors":"Koki Tsuyuzaki","doi":"10.21105/joss.05664","DOIUrl":null,"url":null,"abstract":"Matrix factorization (MF) is a widely used approach to extract significant patterns in a data matrix. MF is formalized as the approximation of a data matrix X by the matrix product of two factor matrices U and V. Because this formalization has a large number of degrees of freedom, some constraints are imposed on the solution. Non-negative matrix factorization (NMF) imposing a non-negative solution for the factor matrices is a widely used algorithm to decompose non-negative matrix data matrix. Due to the interpretability of its non-negativity and the convenience of using decomposition results as clustering, there are many applications of NMF in image processing, audio processing, and bioinformatics (Cichocki et al., 2009).","PeriodicalId":16635,"journal":{"name":"Journal of open source software","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"dcTensor: An R package for discrete matrix/tensor\\ndecomposition\",\"authors\":\"Koki Tsuyuzaki\",\"doi\":\"10.21105/joss.05664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Matrix factorization (MF) is a widely used approach to extract significant patterns in a data matrix. MF is formalized as the approximation of a data matrix X by the matrix product of two factor matrices U and V. Because this formalization has a large number of degrees of freedom, some constraints are imposed on the solution. Non-negative matrix factorization (NMF) imposing a non-negative solution for the factor matrices is a widely used algorithm to decompose non-negative matrix data matrix. Due to the interpretability of its non-negativity and the convenience of using decomposition results as clustering, there are many applications of NMF in image processing, audio processing, and bioinformatics (Cichocki et al., 2009).\",\"PeriodicalId\":16635,\"journal\":{\"name\":\"Journal of open source software\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of open source software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21105/joss.05664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of open source software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21105/joss.05664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

矩阵分解(MF)是一种广泛使用的从数据矩阵中提取重要模式的方法。MF被形式化为数据矩阵X通过两个因子矩阵U和v的矩阵积的近似。由于这种形式化具有大量的自由度,因此在解上施加了一些约束。非负矩阵分解(NMF)是一种应用广泛的分解非负矩阵数据矩阵的算法。由于其非负性的可解释性和使用分解结果作为聚类的便利性,NMF在图像处理、音频处理和生物信息学中有许多应用(Cichocki et al., 2009)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
dcTensor: An R package for discrete matrix/tensor decomposition
Matrix factorization (MF) is a widely used approach to extract significant patterns in a data matrix. MF is formalized as the approximation of a data matrix X by the matrix product of two factor matrices U and V. Because this formalization has a large number of degrees of freedom, some constraints are imposed on the solution. Non-negative matrix factorization (NMF) imposing a non-negative solution for the factor matrices is a widely used algorithm to decompose non-negative matrix data matrix. Due to the interpretability of its non-negativity and the convenience of using decomposition results as clustering, there are many applications of NMF in image processing, audio processing, and bioinformatics (Cichocki et al., 2009).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MousebreedeR: A novel software to assist in the design of breeding schema for complex genotypes of experimental organisms OpenTerrace: A fast, flexible and extendable Python framework for thermal energy storage packed bed simulations TrackSegNet: a tool for trajectory segmentation into diffusive states using supervised deep learning omni-fig: Unleashing Project Configuration and Organization in Python PowerAPI: A Python framework for building software-defined power meters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1