社交网络链接预测技术综述

A. Samad, Mamoona Qadir, Ishrat Nawaz, Muhammad Arshad Islam, Muhammad Aleem
{"title":"社交网络链接预测技术综述","authors":"A. Samad, Mamoona Qadir, Ishrat Nawaz, Muhammad Arshad Islam, Muhammad Aleem","doi":"10.4108/eai.13-7-2018.163988","DOIUrl":null,"url":null,"abstract":"A growing trend of using social networking sites is attracting researchers to study and analyze different aspects of social network. Besides many problems, link prediction is a fascinating problem in the field of social network analysis (SNA). Link prediction, in social network analysis, is a task of identifying the missing links and predicting the new links. Several researchers have proposed solutions for the link prediction problem during the past two decades. However, there is a need to provide comprehensive overview of the significant contributions for a thorough analysis. The objective of this review is to summaries and discuss the existing link prediction algorithms in a common context for an unbiased analysis. The extensive review is presented by constructing the systematical category for proposed algorithms, selected problems, evaluation measures along with selected network datasets. Finally, applications of link prediction are discussed.","PeriodicalId":33474,"journal":{"name":"EAI Endorsed Transactions on Industrial Networks and Intelligent Systems","volume":"52 1","pages":"e3"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A Comprehensive Survey of Link Prediction Techniques for Social Network\",\"authors\":\"A. Samad, Mamoona Qadir, Ishrat Nawaz, Muhammad Arshad Islam, Muhammad Aleem\",\"doi\":\"10.4108/eai.13-7-2018.163988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A growing trend of using social networking sites is attracting researchers to study and analyze different aspects of social network. Besides many problems, link prediction is a fascinating problem in the field of social network analysis (SNA). Link prediction, in social network analysis, is a task of identifying the missing links and predicting the new links. Several researchers have proposed solutions for the link prediction problem during the past two decades. However, there is a need to provide comprehensive overview of the significant contributions for a thorough analysis. The objective of this review is to summaries and discuss the existing link prediction algorithms in a common context for an unbiased analysis. The extensive review is presented by constructing the systematical category for proposed algorithms, selected problems, evaluation measures along with selected network datasets. Finally, applications of link prediction are discussed.\",\"PeriodicalId\":33474,\"journal\":{\"name\":\"EAI Endorsed Transactions on Industrial Networks and Intelligent Systems\",\"volume\":\"52 1\",\"pages\":\"e3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Transactions on Industrial Networks and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eai.13-7-2018.163988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Industrial Networks and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.13-7-2018.163988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 16

摘要

越来越多的人使用社交网站,这吸引了研究者对社交网络的各个方面进行研究和分析。链接预测是社会网络分析(SNA)领域中一个引人关注的问题。在社会网络分析中,链接预测是一项识别缺失链接并预测新链接的任务。在过去的二十年里,一些研究人员提出了链路预测问题的解决方案。但是,有必要提供重要贡献的全面概述,以便进行彻底的分析。这篇综述的目的是总结和讨论现有的链接预测算法在一个共同的背景下进行公正的分析。广泛的审查是通过构建系统的分类提出的算法,选择的问题,评估措施以及选择的网络数据集。最后,讨论了链路预测的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Comprehensive Survey of Link Prediction Techniques for Social Network
A growing trend of using social networking sites is attracting researchers to study and analyze different aspects of social network. Besides many problems, link prediction is a fascinating problem in the field of social network analysis (SNA). Link prediction, in social network analysis, is a task of identifying the missing links and predicting the new links. Several researchers have proposed solutions for the link prediction problem during the past two decades. However, there is a need to provide comprehensive overview of the significant contributions for a thorough analysis. The objective of this review is to summaries and discuss the existing link prediction algorithms in a common context for an unbiased analysis. The extensive review is presented by constructing the systematical category for proposed algorithms, selected problems, evaluation measures along with selected network datasets. Finally, applications of link prediction are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
15
审稿时长
10 weeks
期刊最新文献
ViMedNER: A Medical Named Entity Recognition Dataset for Vietnamese Distributed Spatially Non-Stationary Channel Estimation for Extremely-Large Antenna Systems On the Performance of the Relay Selection in Multi-hop Cluster-based Wireless Networks with Multiple Eavesdroppers Under Equally Correlated Rayleigh Fading Improving Performance of the Typical User in the Indoor Cooperative NOMA Millimeter Wave Networks with Presence of Walls Real-time Single-Channel EOG removal based on Empirical Mode Decomposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1