Lili Miao, Fei Su, Yongsheng Yang, Yue Liu, Lei Wang, Y. Zhan, Ronghua Yin, Miao Yu, Changyan Li, Xiaoming Yang, Changhui Ge
{"title":"甘油激酶通过抑制核受体亚家族4 A1增强肝脏脂质代谢。","authors":"Lili Miao, Fei Su, Yongsheng Yang, Yue Liu, Lei Wang, Y. Zhan, Ronghua Yin, Miao Yu, Changyan Li, Xiaoming Yang, Changhui Ge","doi":"10.1139/bcb-2019-0317","DOIUrl":null,"url":null,"abstract":"Glycerol kinase (GYK) plays a critical role in hepatic metabolism by converting glycerol to glycerol 3-phosphate in an ATP-dependent reaction. GYK isoform b is the only glycerol kinase present in whole cells and has a non-enzymatic moonlighting function in the nucleus. GYK isoform b acts as a co-regulator of nuclear receptor subfamily 4 group A1 (NR4A1) and participates in the regulation of hepatic glucose metabolism by protein-protein interaction with NR4A1. Herein, GYK expression was found to upregulate the expression of NR4A1-mediated lipid metabolism-related genes (SREBP1C, FASN, ACACA, and GPAM) in HEK293T and L02 cells, and in mouse in vivo studies. GYK expression increased blood cholesterol, triglyceride, and high-density lipoprotein cholesterol levels but not low-density lipoprotein cholesterol levels. It enhanced the transcriptional activity of Nr4a1 target genes by negatively cooperating with NR4A1 and its enzymatic activity or by other undefined moonlighting functions. This enhancement was observed in both normal and diabetic mice. We also found a feed-forward regulation loop between GYK and NR4A1, serving as part of a GYK-NR4A1 regulatory mechanism in hepatic metabolism. Thus, GYK regulates the effect of NR4A1 on hepatic lipid metabolism in normal and diabetic mice, partially through the cooperation of GYK and NR4A1.","PeriodicalId":9524,"journal":{"name":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Glycerol kinase enhances hepatic lipid metabolism by repressing nuclear receptor subfamily 4 group A1 in the nucleus.\",\"authors\":\"Lili Miao, Fei Su, Yongsheng Yang, Yue Liu, Lei Wang, Y. Zhan, Ronghua Yin, Miao Yu, Changyan Li, Xiaoming Yang, Changhui Ge\",\"doi\":\"10.1139/bcb-2019-0317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glycerol kinase (GYK) plays a critical role in hepatic metabolism by converting glycerol to glycerol 3-phosphate in an ATP-dependent reaction. GYK isoform b is the only glycerol kinase present in whole cells and has a non-enzymatic moonlighting function in the nucleus. GYK isoform b acts as a co-regulator of nuclear receptor subfamily 4 group A1 (NR4A1) and participates in the regulation of hepatic glucose metabolism by protein-protein interaction with NR4A1. Herein, GYK expression was found to upregulate the expression of NR4A1-mediated lipid metabolism-related genes (SREBP1C, FASN, ACACA, and GPAM) in HEK293T and L02 cells, and in mouse in vivo studies. GYK expression increased blood cholesterol, triglyceride, and high-density lipoprotein cholesterol levels but not low-density lipoprotein cholesterol levels. It enhanced the transcriptional activity of Nr4a1 target genes by negatively cooperating with NR4A1 and its enzymatic activity or by other undefined moonlighting functions. This enhancement was observed in both normal and diabetic mice. We also found a feed-forward regulation loop between GYK and NR4A1, serving as part of a GYK-NR4A1 regulatory mechanism in hepatic metabolism. Thus, GYK regulates the effect of NR4A1 on hepatic lipid metabolism in normal and diabetic mice, partially through the cooperation of GYK and NR4A1.\",\"PeriodicalId\":9524,\"journal\":{\"name\":\"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/bcb-2019-0317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/bcb-2019-0317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Glycerol kinase enhances hepatic lipid metabolism by repressing nuclear receptor subfamily 4 group A1 in the nucleus.
Glycerol kinase (GYK) plays a critical role in hepatic metabolism by converting glycerol to glycerol 3-phosphate in an ATP-dependent reaction. GYK isoform b is the only glycerol kinase present in whole cells and has a non-enzymatic moonlighting function in the nucleus. GYK isoform b acts as a co-regulator of nuclear receptor subfamily 4 group A1 (NR4A1) and participates in the regulation of hepatic glucose metabolism by protein-protein interaction with NR4A1. Herein, GYK expression was found to upregulate the expression of NR4A1-mediated lipid metabolism-related genes (SREBP1C, FASN, ACACA, and GPAM) in HEK293T and L02 cells, and in mouse in vivo studies. GYK expression increased blood cholesterol, triglyceride, and high-density lipoprotein cholesterol levels but not low-density lipoprotein cholesterol levels. It enhanced the transcriptional activity of Nr4a1 target genes by negatively cooperating with NR4A1 and its enzymatic activity or by other undefined moonlighting functions. This enhancement was observed in both normal and diabetic mice. We also found a feed-forward regulation loop between GYK and NR4A1, serving as part of a GYK-NR4A1 regulatory mechanism in hepatic metabolism. Thus, GYK regulates the effect of NR4A1 on hepatic lipid metabolism in normal and diabetic mice, partially through the cooperation of GYK and NR4A1.