{"title":"rCUDA展示演示的设计","authors":"C. Reaño, Ferran Perez, F. Silla","doi":"10.1109/CCGrid.2015.53","DOIUrl":null,"url":null,"abstract":"CUDA is a technology developed by NVIDIA which provides a parallel computing platform and programming model for NVIDIA GPUs and compatible ones. It takes benefit from the enormous parallel processing power of GPUs in order to accelerate a wide range of applications, thus reducing their execution time. rCUDA (remote CUDA) is a middleware which grants applications concurrent access to CUDA-compatible devices installed in other nodes of the cluster in a transparent way so that applications are not aware of being accessing a remote device. In this paper we present a demo which shows, in real time, the overhead introduced by rCUDA in comparison to CUDA when running image filtering applications. The approach followed in this work is to develop a graphical demo which contains both an appealing design and technical contents.","PeriodicalId":6664,"journal":{"name":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","volume":"35 1","pages":"1169-1172"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Design of a Demo for Exhibiting rCUDA\",\"authors\":\"C. Reaño, Ferran Perez, F. Silla\",\"doi\":\"10.1109/CCGrid.2015.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CUDA is a technology developed by NVIDIA which provides a parallel computing platform and programming model for NVIDIA GPUs and compatible ones. It takes benefit from the enormous parallel processing power of GPUs in order to accelerate a wide range of applications, thus reducing their execution time. rCUDA (remote CUDA) is a middleware which grants applications concurrent access to CUDA-compatible devices installed in other nodes of the cluster in a transparent way so that applications are not aware of being accessing a remote device. In this paper we present a demo which shows, in real time, the overhead introduced by rCUDA in comparison to CUDA when running image filtering applications. The approach followed in this work is to develop a graphical demo which contains both an appealing design and technical contents.\",\"PeriodicalId\":6664,\"journal\":{\"name\":\"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing\",\"volume\":\"35 1\",\"pages\":\"1169-1172\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGrid.2015.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2015.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CUDA is a technology developed by NVIDIA which provides a parallel computing platform and programming model for NVIDIA GPUs and compatible ones. It takes benefit from the enormous parallel processing power of GPUs in order to accelerate a wide range of applications, thus reducing their execution time. rCUDA (remote CUDA) is a middleware which grants applications concurrent access to CUDA-compatible devices installed in other nodes of the cluster in a transparent way so that applications are not aware of being accessing a remote device. In this paper we present a demo which shows, in real time, the overhead introduced by rCUDA in comparison to CUDA when running image filtering applications. The approach followed in this work is to develop a graphical demo which contains both an appealing design and technical contents.