{"title":"磁浮力隔音模型的自伴随性","authors":"J. Moss, T. Wood, P. Bushby","doi":"10.1080/03091929.2023.2234596","DOIUrl":null,"url":null,"abstract":"An ideal magneto-hydrodynamic fluid, whether fully compressible or incompressible, is a Hamiltonian system. This implies that the equations describing perturbations to any static state are self-adjoint, a fact that is useful in obtaining stability criteria. To describe weakly compressible flows, there are a number of “sound-proof” models that eliminate sound waves by making approximations to the governing equations. However, such approximations may violate the Hamiltonian structure of the system. In a recent work, we have introduced a very general sound-proof model and determined conditions under which it closely approximates the linear regime of magneto-buoyancy instability, motivated by conditions in the solar interior. In the present work, we take a complementary approach, by deriving constraints under which the linearised sound-proof system is self-adjoint. We show that there is a unique set of self-adjoint sound-proof equations that conserves the same energy as the fully compressible system.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"28 1","pages":"263 - 277"},"PeriodicalIF":1.1000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-adjointness of sound-proof models for magnetic buoyancy\",\"authors\":\"J. Moss, T. Wood, P. Bushby\",\"doi\":\"10.1080/03091929.2023.2234596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An ideal magneto-hydrodynamic fluid, whether fully compressible or incompressible, is a Hamiltonian system. This implies that the equations describing perturbations to any static state are self-adjoint, a fact that is useful in obtaining stability criteria. To describe weakly compressible flows, there are a number of “sound-proof” models that eliminate sound waves by making approximations to the governing equations. However, such approximations may violate the Hamiltonian structure of the system. In a recent work, we have introduced a very general sound-proof model and determined conditions under which it closely approximates the linear regime of magneto-buoyancy instability, motivated by conditions in the solar interior. In the present work, we take a complementary approach, by deriving constraints under which the linearised sound-proof system is self-adjoint. We show that there is a unique set of self-adjoint sound-proof equations that conserves the same energy as the fully compressible system.\",\"PeriodicalId\":56132,\"journal\":{\"name\":\"Geophysical and Astrophysical Fluid Dynamics\",\"volume\":\"28 1\",\"pages\":\"263 - 277\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical and Astrophysical Fluid Dynamics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/03091929.2023.2234596\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical and Astrophysical Fluid Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/03091929.2023.2234596","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Self-adjointness of sound-proof models for magnetic buoyancy
An ideal magneto-hydrodynamic fluid, whether fully compressible or incompressible, is a Hamiltonian system. This implies that the equations describing perturbations to any static state are self-adjoint, a fact that is useful in obtaining stability criteria. To describe weakly compressible flows, there are a number of “sound-proof” models that eliminate sound waves by making approximations to the governing equations. However, such approximations may violate the Hamiltonian structure of the system. In a recent work, we have introduced a very general sound-proof model and determined conditions under which it closely approximates the linear regime of magneto-buoyancy instability, motivated by conditions in the solar interior. In the present work, we take a complementary approach, by deriving constraints under which the linearised sound-proof system is self-adjoint. We show that there is a unique set of self-adjoint sound-proof equations that conserves the same energy as the fully compressible system.
期刊介绍:
Geophysical and Astrophysical Fluid Dynamics exists for the publication of original research papers and short communications, occasional survey articles and conference reports on the fluid mechanics of the earth and planets, including oceans, atmospheres and interiors, and the fluid mechanics of the sun, stars and other astrophysical objects.
In addition, their magnetohydrodynamic behaviours are investigated. Experimental, theoretical and numerical studies of rotating, stratified and convecting fluids of general interest to geophysicists and astrophysicists appear. Properly interpreted observational results are also published.