姜黄素通过抑制JAK1/STAT1通路减轻脑出血诱导的神经元凋亡和神经炎症。

Fei Wang, Jian-jun Xia, Lijuan Shen, Ting Jiang, Wu-Lin Li, Da-li You, Qing Chang, Shan-you Hu, Li Wang, Xiao Wu
{"title":"姜黄素通过抑制JAK1/STAT1通路减轻脑出血诱导的神经元凋亡和神经炎症。","authors":"Fei Wang, Jian-jun Xia, Lijuan Shen, Ting Jiang, Wu-Lin Li, Da-li You, Qing Chang, Shan-you Hu, Li Wang, Xiao Wu","doi":"10.1139/bcb-2021-0423","DOIUrl":null,"url":null,"abstract":"To date, there is no effective treatment strategy for Intracerebral hemorrhage (ICH). Curcumin, a major active ingredient of curcuma longa L, possesses a potential anti-inflammatory activity in many types of disease. In the current study, the mechanism underlying curcumin attenuates ICH-induced neuronal apoptosis and neuroinflammation was explored. Herein, we studied curcumin decreased brain edema and improved neurological function by using brain edema measurement, assessment of neurological-deficient score, immunofluorescence, and western blotting analyses after ICH. The results showed that curcumin improved ICH-induced neuronal apoptosis and neuroinflammation. Functionally, the polarization of microglia was assessed by immunofluorescence and western blotting analyses after ICH in the absence or presence of curcumin. The results suggested that the M1-type microglia were activated after ICH, while the effect was blocked by curcumin treatment, suggesting that curcumin alleviates the neuroinflammation and apoptosis of neurons by suppressing the M1-type polarization of microglia. Mechanically, M1 polarization of microglia was regulated by JAK1/STAT1 and the activation of JAK1/STAT1 was blocked by curcumin. Meanwhile, the protective function of curcumin can be blocked by RO8191, an activator of JAK1. Taken together our study suggests that curcumin improved the ICH-induced brain injury through alleviating M1 polarization of microglia/macrophage and neuroinflammation via suppressing JAK1/STAT1 pathway.","PeriodicalId":9524,"journal":{"name":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","volume":"187 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Curcumin attenuates intracerebral hemorrhage-induced neuronal apoptosis and neuroinflammation by suppressing the JAK1/STAT1 pathway.\",\"authors\":\"Fei Wang, Jian-jun Xia, Lijuan Shen, Ting Jiang, Wu-Lin Li, Da-li You, Qing Chang, Shan-you Hu, Li Wang, Xiao Wu\",\"doi\":\"10.1139/bcb-2021-0423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To date, there is no effective treatment strategy for Intracerebral hemorrhage (ICH). Curcumin, a major active ingredient of curcuma longa L, possesses a potential anti-inflammatory activity in many types of disease. In the current study, the mechanism underlying curcumin attenuates ICH-induced neuronal apoptosis and neuroinflammation was explored. Herein, we studied curcumin decreased brain edema and improved neurological function by using brain edema measurement, assessment of neurological-deficient score, immunofluorescence, and western blotting analyses after ICH. The results showed that curcumin improved ICH-induced neuronal apoptosis and neuroinflammation. Functionally, the polarization of microglia was assessed by immunofluorescence and western blotting analyses after ICH in the absence or presence of curcumin. The results suggested that the M1-type microglia were activated after ICH, while the effect was blocked by curcumin treatment, suggesting that curcumin alleviates the neuroinflammation and apoptosis of neurons by suppressing the M1-type polarization of microglia. Mechanically, M1 polarization of microglia was regulated by JAK1/STAT1 and the activation of JAK1/STAT1 was blocked by curcumin. Meanwhile, the protective function of curcumin can be blocked by RO8191, an activator of JAK1. Taken together our study suggests that curcumin improved the ICH-induced brain injury through alleviating M1 polarization of microglia/macrophage and neuroinflammation via suppressing JAK1/STAT1 pathway.\",\"PeriodicalId\":9524,\"journal\":{\"name\":\"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire\",\"volume\":\"187 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/bcb-2021-0423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/bcb-2021-0423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

迄今为止,脑出血(ICH)没有有效的治疗策略。姜黄素是姜黄的主要有效成分,对多种疾病具有潜在的抗炎作用。本研究旨在探讨姜黄素减轻ich诱导的神经元凋亡和神经炎症的机制。在此,我们通过脑水肿测量、神经缺陷评分评估、免疫荧光和免疫印迹分析来研究姜黄素减少脑水肿和改善神经功能。结果表明,姜黄素可改善ich诱导的神经细胞凋亡和神经炎症。功能上,在姜黄素不存在或不存在的情况下,用免疫荧光和western blotting分析脑出血后小胶质细胞的极化情况。结果表明,脑出血后m1型小胶质细胞被激活,而姜黄素处理可阻断这一作用,提示姜黄素通过抑制小胶质细胞的m1型极化来减轻神经炎症和神经元凋亡。机械上,小胶质细胞的M1极化由JAK1/STAT1调控,而JAK1/STAT1的激活被姜黄素阻断。同时,姜黄素的保护功能可被JAK1激活剂RO8191阻断。综上所述,我们的研究表明姜黄素通过抑制JAK1/STAT1通路减轻小胶质细胞/巨噬细胞的M1极化和神经炎症,从而改善ich诱导的脑损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Curcumin attenuates intracerebral hemorrhage-induced neuronal apoptosis and neuroinflammation by suppressing the JAK1/STAT1 pathway.
To date, there is no effective treatment strategy for Intracerebral hemorrhage (ICH). Curcumin, a major active ingredient of curcuma longa L, possesses a potential anti-inflammatory activity in many types of disease. In the current study, the mechanism underlying curcumin attenuates ICH-induced neuronal apoptosis and neuroinflammation was explored. Herein, we studied curcumin decreased brain edema and improved neurological function by using brain edema measurement, assessment of neurological-deficient score, immunofluorescence, and western blotting analyses after ICH. The results showed that curcumin improved ICH-induced neuronal apoptosis and neuroinflammation. Functionally, the polarization of microglia was assessed by immunofluorescence and western blotting analyses after ICH in the absence or presence of curcumin. The results suggested that the M1-type microglia were activated after ICH, while the effect was blocked by curcumin treatment, suggesting that curcumin alleviates the neuroinflammation and apoptosis of neurons by suppressing the M1-type polarization of microglia. Mechanically, M1 polarization of microglia was regulated by JAK1/STAT1 and the activation of JAK1/STAT1 was blocked by curcumin. Meanwhile, the protective function of curcumin can be blocked by RO8191, an activator of JAK1. Taken together our study suggests that curcumin improved the ICH-induced brain injury through alleviating M1 polarization of microglia/macrophage and neuroinflammation via suppressing JAK1/STAT1 pathway.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The search for genetic dark matter and lessons learned from the journey. HOXA5 inhibits adipocytes proliferation through transcriptional regulation of Ccne1 and blocking JAK2/STAT3 signaling pathway in mice. Evaluation of HZX-960, a novel DCN1-UBC12 interaction inhibitor, as a potential antifibrotic compound for liver fibrosis. Curcumin attenuates intracerebral hemorrhage-induced neuronal apoptosis and neuroinflammation by suppressing the JAK1/STAT1 pathway. Establishing an incentive-based multi-stakeholder approach to Dual Use DNA screening.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1