{"title":"模拟海底和平台生产方案,量化科威特海上瞬态和稳态条件下的流动保障风险","authors":"E. Al-Safran","doi":"10.2118/206275-ms","DOIUrl":null,"url":null,"abstract":"\n In offshore production, the type of field development scheme is crucial aspect due to its associated flow assurance risks, which affect project economic, safety, and sustainability. The objective of this study is to simulate and evaluate two offshore field development schemes, namely subsea and platform in offshore Kuwait. Further objective is to carry out detailed transient simulation study on the subsea scheme to investigate flow assurance risks related to terrain slugging, and hydrates formation during shut-in and re-start transient events. The evaluation of the two schemes is based on the associated flow assurance risks, and project economics. Steady state simulations are used to identify the feasible production scheme, which is further simulated under transient shut-in/restart events to investigate flow assurance risks related to terrain slugging and hydrates formation. The steady state simulation results of this study showed that flow assurance risks such as hydrates and pipeline corrosion are significant in both production schemes. To mitigate these risks, sixteen different field development designs of both production schemes were simulated and economically evaluated. Results revealed that the subsea multiphase development scheme with 10-in. ID carbon steel multiphase flowline and 0.3-in. thick polypropylene thermal insulation is the optimum design. Consequently, the optimum design is further analyzed under transient conditions, resulting in appreciable risk of terrain slugging due to hilly-terrain pipeline configuration, especially for the low production rate cases. The transient shut-in/restart simulation results revealed a risk of hydrates formation due to cooling effect during shut-in, which is mitigated by MEG injection. In conclusion, the subsea multiphase flow scheme is selected over platform scheme due to manageable flow assurance risks, low capital investment cost, and minimum environmental impact. This study would enable Kuwait Oil Company to evaluate different offshore development schemes to ensure sustainable production with safe operation and protected environment.","PeriodicalId":10928,"journal":{"name":"Day 2 Wed, September 22, 2021","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of Subsea and Platform Production Schemes to Quantify Flow Assurance Risks under Transient and Steady State Conditions in Offshore Kuwait\",\"authors\":\"E. Al-Safran\",\"doi\":\"10.2118/206275-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In offshore production, the type of field development scheme is crucial aspect due to its associated flow assurance risks, which affect project economic, safety, and sustainability. The objective of this study is to simulate and evaluate two offshore field development schemes, namely subsea and platform in offshore Kuwait. Further objective is to carry out detailed transient simulation study on the subsea scheme to investigate flow assurance risks related to terrain slugging, and hydrates formation during shut-in and re-start transient events. The evaluation of the two schemes is based on the associated flow assurance risks, and project economics. Steady state simulations are used to identify the feasible production scheme, which is further simulated under transient shut-in/restart events to investigate flow assurance risks related to terrain slugging and hydrates formation. The steady state simulation results of this study showed that flow assurance risks such as hydrates and pipeline corrosion are significant in both production schemes. To mitigate these risks, sixteen different field development designs of both production schemes were simulated and economically evaluated. Results revealed that the subsea multiphase development scheme with 10-in. ID carbon steel multiphase flowline and 0.3-in. thick polypropylene thermal insulation is the optimum design. Consequently, the optimum design is further analyzed under transient conditions, resulting in appreciable risk of terrain slugging due to hilly-terrain pipeline configuration, especially for the low production rate cases. The transient shut-in/restart simulation results revealed a risk of hydrates formation due to cooling effect during shut-in, which is mitigated by MEG injection. In conclusion, the subsea multiphase flow scheme is selected over platform scheme due to manageable flow assurance risks, low capital investment cost, and minimum environmental impact. This study would enable Kuwait Oil Company to evaluate different offshore development schemes to ensure sustainable production with safe operation and protected environment.\",\"PeriodicalId\":10928,\"journal\":{\"name\":\"Day 2 Wed, September 22, 2021\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, September 22, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/206275-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, September 22, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/206275-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation of Subsea and Platform Production Schemes to Quantify Flow Assurance Risks under Transient and Steady State Conditions in Offshore Kuwait
In offshore production, the type of field development scheme is crucial aspect due to its associated flow assurance risks, which affect project economic, safety, and sustainability. The objective of this study is to simulate and evaluate two offshore field development schemes, namely subsea and platform in offshore Kuwait. Further objective is to carry out detailed transient simulation study on the subsea scheme to investigate flow assurance risks related to terrain slugging, and hydrates formation during shut-in and re-start transient events. The evaluation of the two schemes is based on the associated flow assurance risks, and project economics. Steady state simulations are used to identify the feasible production scheme, which is further simulated under transient shut-in/restart events to investigate flow assurance risks related to terrain slugging and hydrates formation. The steady state simulation results of this study showed that flow assurance risks such as hydrates and pipeline corrosion are significant in both production schemes. To mitigate these risks, sixteen different field development designs of both production schemes were simulated and economically evaluated. Results revealed that the subsea multiphase development scheme with 10-in. ID carbon steel multiphase flowline and 0.3-in. thick polypropylene thermal insulation is the optimum design. Consequently, the optimum design is further analyzed under transient conditions, resulting in appreciable risk of terrain slugging due to hilly-terrain pipeline configuration, especially for the low production rate cases. The transient shut-in/restart simulation results revealed a risk of hydrates formation due to cooling effect during shut-in, which is mitigated by MEG injection. In conclusion, the subsea multiphase flow scheme is selected over platform scheme due to manageable flow assurance risks, low capital investment cost, and minimum environmental impact. This study would enable Kuwait Oil Company to evaluate different offshore development schemes to ensure sustainable production with safe operation and protected environment.