卷积受限玻尔兹曼机辅助蒙特卡罗:在Ising和Kitaev模型中的应用

Daniel Alcalde Puente, I. Eremin
{"title":"卷积受限玻尔兹曼机辅助蒙特卡罗:在Ising和Kitaev模型中的应用","authors":"Daniel Alcalde Puente, I. Eremin","doi":"10.1103/physrevb.102.195148","DOIUrl":null,"url":null,"abstract":"Machine learning is becoming widely used in analyzing the thermodynamics of many-body condensed matter systems. Restricted Boltzmann Machine (RBM) aided Monte Carlo simulations have sparked interest recently, as they manage to speed up classical Monte Carlo simulations. Here we employ the Convolutional Restricted Boltzmann Machine (CRBM) method and show that its use helps to reduce the number of parameters to be learned drastically by taking advantage of translation invariance. Furthermore, we show that it is possible to train the CRBM at smaller lattice sizes, and apply it to larger lattice sizes. To demonstrate the efficiency of CRBM we apply it to the paradigmatic Ising and Kitaev models in two-dimensions.","PeriodicalId":8473,"journal":{"name":"arXiv: Statistical Mechanics","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Convolutional restricted Boltzmann machine aided Monte Carlo: An application to Ising and Kitaev models\",\"authors\":\"Daniel Alcalde Puente, I. Eremin\",\"doi\":\"10.1103/physrevb.102.195148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning is becoming widely used in analyzing the thermodynamics of many-body condensed matter systems. Restricted Boltzmann Machine (RBM) aided Monte Carlo simulations have sparked interest recently, as they manage to speed up classical Monte Carlo simulations. Here we employ the Convolutional Restricted Boltzmann Machine (CRBM) method and show that its use helps to reduce the number of parameters to be learned drastically by taking advantage of translation invariance. Furthermore, we show that it is possible to train the CRBM at smaller lattice sizes, and apply it to larger lattice sizes. To demonstrate the efficiency of CRBM we apply it to the paradigmatic Ising and Kitaev models in two-dimensions.\",\"PeriodicalId\":8473,\"journal\":{\"name\":\"arXiv: Statistical Mechanics\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Statistical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.102.195148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevb.102.195148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

机器学习在多体凝聚态系统的热力学分析中得到了广泛的应用。受限玻尔兹曼机(RBM)辅助蒙特卡罗模拟最近引起了人们的兴趣,因为它们能够加速经典蒙特卡罗模拟。在这里,我们采用卷积受限玻尔兹曼机(CRBM)方法,并表明它的使用有助于通过利用平移不变性大大减少需要学习的参数数量。此外,我们表明可以在较小的晶格尺寸上训练CRBM,并将其应用于更大的晶格尺寸。为了证明CRBM的有效性,我们将其应用于二维的Ising和Kitaev模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Convolutional restricted Boltzmann machine aided Monte Carlo: An application to Ising and Kitaev models
Machine learning is becoming widely used in analyzing the thermodynamics of many-body condensed matter systems. Restricted Boltzmann Machine (RBM) aided Monte Carlo simulations have sparked interest recently, as they manage to speed up classical Monte Carlo simulations. Here we employ the Convolutional Restricted Boltzmann Machine (CRBM) method and show that its use helps to reduce the number of parameters to be learned drastically by taking advantage of translation invariance. Furthermore, we show that it is possible to train the CRBM at smaller lattice sizes, and apply it to larger lattice sizes. To demonstrate the efficiency of CRBM we apply it to the paradigmatic Ising and Kitaev models in two-dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Black-Body Radiation The Ising Model Large Deviation Theory The First Law The Constitution of Stars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1