{"title":"超声驱动单泡的能量耗散和化学产率","authors":"Csanád Kalmár, F. Hegedűs","doi":"10.3311/ppme.20360","DOIUrl":null,"url":null,"abstract":"A detailed parameter study is made of chemically active spherical bubbles. The calculations apply an up-to-date chemical mechanism for pure oxygen initial content, taking into account pressure dependency, duplication of chemical reactions, and proper third-body efficiency coefficients. The chemical yield is defined as the amount of substance at the maximum bubble radius, and the dissipated power is approached in a relatively new method. The parameter study focuses on finding the parameter combinations where maximum yield and maximum energy efficiency arise for various chemical species (O3, OH radical, H2 and H2O2). Results show that the locations of maximum yield and efficiency points differ significantly, depending on the chemical species. Usually, neither chemical yield nor efficiency values arise at maximum pressure amplitude and minimum driving frequency (as one would presumably expect).","PeriodicalId":43630,"journal":{"name":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy Dissipation and Chemical Yield of an Ultrasound Driven Single Bubble\",\"authors\":\"Csanád Kalmár, F. Hegedűs\",\"doi\":\"10.3311/ppme.20360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A detailed parameter study is made of chemically active spherical bubbles. The calculations apply an up-to-date chemical mechanism for pure oxygen initial content, taking into account pressure dependency, duplication of chemical reactions, and proper third-body efficiency coefficients. The chemical yield is defined as the amount of substance at the maximum bubble radius, and the dissipated power is approached in a relatively new method. The parameter study focuses on finding the parameter combinations where maximum yield and maximum energy efficiency arise for various chemical species (O3, OH radical, H2 and H2O2). Results show that the locations of maximum yield and efficiency points differ significantly, depending on the chemical species. Usually, neither chemical yield nor efficiency values arise at maximum pressure amplitude and minimum driving frequency (as one would presumably expect).\",\"PeriodicalId\":43630,\"journal\":{\"name\":\"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3311/ppme.20360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/ppme.20360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Energy Dissipation and Chemical Yield of an Ultrasound Driven Single Bubble
A detailed parameter study is made of chemically active spherical bubbles. The calculations apply an up-to-date chemical mechanism for pure oxygen initial content, taking into account pressure dependency, duplication of chemical reactions, and proper third-body efficiency coefficients. The chemical yield is defined as the amount of substance at the maximum bubble radius, and the dissipated power is approached in a relatively new method. The parameter study focuses on finding the parameter combinations where maximum yield and maximum energy efficiency arise for various chemical species (O3, OH radical, H2 and H2O2). Results show that the locations of maximum yield and efficiency points differ significantly, depending on the chemical species. Usually, neither chemical yield nor efficiency values arise at maximum pressure amplitude and minimum driving frequency (as one would presumably expect).
期刊介绍:
Periodica Polytechnica is a publisher of the Budapest University of Technology and Economics. It publishes seven international journals (Architecture, Chemical Engineering, Civil Engineering, Electrical Engineering, Mechanical Engineering, Social and Management Sciences, Transportation Engineering). The journals have free electronic versions.