Red Belly:一个安全、公平、可扩展的开放区块链

Tyler Crain, Christopher Natoli, V. Gramoli
{"title":"Red Belly:一个安全、公平、可扩展的开放区块链","authors":"Tyler Crain, Christopher Natoli, V. Gramoli","doi":"10.1109/SP40001.2021.00087","DOIUrl":null,"url":null,"abstract":"Blockchain has found applications to track ownership of digital assets. Yet, several blockchains were shown vulnerable to network attacks. It is thus crucial for companies to adopt secure blockchains before moving them to production. In this paper, we present Red Belly Blockchain (RBBC), the first secure blockchain whose throughput scales to hundreds of geodistributed consensus participants. To this end, we drastically revisited Byzantine Fault Tolerant (BFT) blockchains through three contributions: (i) defining the Set Byzantine Con-sensus problem of agreeing on a superblock of all proposed blocks instead of a single block; (ii) adopting a fair leaderless design to offer censorship-resistance guaranteeing the commit of correctly requested transactions; (iii) introducing sharded verification to limit the number of signature verifications without hampering security. We evaluate RBBC on up to 1000 VMs of 3 different types, spread across 4 continents, and under attacks. Although its performance is affected by attacks, RBBC scales in that its throughput increases to hundreds of consensus nodes and achieves 30k TPS throughput and 3 second latency on 1000 VMs, hence improving by 3× both the latency and the throughput of its closest competitor.","PeriodicalId":6786,"journal":{"name":"2021 IEEE Symposium on Security and Privacy (SP)","volume":"51 1","pages":"466-483"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"81","resultStr":"{\"title\":\"Red Belly: A Secure, Fair and Scalable Open Blockchain\",\"authors\":\"Tyler Crain, Christopher Natoli, V. Gramoli\",\"doi\":\"10.1109/SP40001.2021.00087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blockchain has found applications to track ownership of digital assets. Yet, several blockchains were shown vulnerable to network attacks. It is thus crucial for companies to adopt secure blockchains before moving them to production. In this paper, we present Red Belly Blockchain (RBBC), the first secure blockchain whose throughput scales to hundreds of geodistributed consensus participants. To this end, we drastically revisited Byzantine Fault Tolerant (BFT) blockchains through three contributions: (i) defining the Set Byzantine Con-sensus problem of agreeing on a superblock of all proposed blocks instead of a single block; (ii) adopting a fair leaderless design to offer censorship-resistance guaranteeing the commit of correctly requested transactions; (iii) introducing sharded verification to limit the number of signature verifications without hampering security. We evaluate RBBC on up to 1000 VMs of 3 different types, spread across 4 continents, and under attacks. Although its performance is affected by attacks, RBBC scales in that its throughput increases to hundreds of consensus nodes and achieves 30k TPS throughput and 3 second latency on 1000 VMs, hence improving by 3× both the latency and the throughput of its closest competitor.\",\"PeriodicalId\":6786,\"journal\":{\"name\":\"2021 IEEE Symposium on Security and Privacy (SP)\",\"volume\":\"51 1\",\"pages\":\"466-483\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"81\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Symposium on Security and Privacy (SP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SP40001.2021.00087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP40001.2021.00087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 81

摘要

区块链已经找到了跟踪数字资产所有权的应用程序。然而,有几个区块链被证明容易受到网络攻击。因此,公司在将其投入生产之前采用安全的区块链是至关重要的。在本文中,我们提出了红腹区块链(RBBC),这是第一个吞吐量扩展到数百个地理分布式共识参与者的安全区块链。为此,我们通过三个贡献彻底重新审视了拜占庭容错(BFT)区块链:(i)定义了集合拜占庭共识问题,即在所有提议的区块而不是单个区块的超级区块上达成一致;(ii)采用公平的无领导设计,提供抗审查性,保证提交正确请求的交易;(iii)引入分片验证,在不影响安全性的情况下限制签名验证的数量。我们在3种不同类型、分布在4大洲、遭受攻击的多达1000台虚拟机上评估RBBC。虽然它的性能受到攻击的影响,但RBBC的吞吐量增加到数百个共识节点,并且在1000个vm上实现了30k TPS吞吐量和3秒延迟,因此延迟和吞吐量都是最接近的竞争对手的3倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Red Belly: A Secure, Fair and Scalable Open Blockchain
Blockchain has found applications to track ownership of digital assets. Yet, several blockchains were shown vulnerable to network attacks. It is thus crucial for companies to adopt secure blockchains before moving them to production. In this paper, we present Red Belly Blockchain (RBBC), the first secure blockchain whose throughput scales to hundreds of geodistributed consensus participants. To this end, we drastically revisited Byzantine Fault Tolerant (BFT) blockchains through three contributions: (i) defining the Set Byzantine Con-sensus problem of agreeing on a superblock of all proposed blocks instead of a single block; (ii) adopting a fair leaderless design to offer censorship-resistance guaranteeing the commit of correctly requested transactions; (iii) introducing sharded verification to limit the number of signature verifications without hampering security. We evaluate RBBC on up to 1000 VMs of 3 different types, spread across 4 continents, and under attacks. Although its performance is affected by attacks, RBBC scales in that its throughput increases to hundreds of consensus nodes and achieves 30k TPS throughput and 3 second latency on 1000 VMs, hence improving by 3× both the latency and the throughput of its closest competitor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A2L: Anonymous Atomic Locks for Scalability in Payment Channel Hubs High-Assurance Cryptography in the Spectre Era An I/O Separation Model for Formal Verification of Kernel Implementations Trust, But Verify: A Longitudinal Analysis Of Android OEM Compliance and Customization HackEd: A Pedagogical Analysis of Online Vulnerability Discovery Exercises
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1