{"title":"Red Belly:一个安全、公平、可扩展的开放区块链","authors":"Tyler Crain, Christopher Natoli, V. Gramoli","doi":"10.1109/SP40001.2021.00087","DOIUrl":null,"url":null,"abstract":"Blockchain has found applications to track ownership of digital assets. Yet, several blockchains were shown vulnerable to network attacks. It is thus crucial for companies to adopt secure blockchains before moving them to production. In this paper, we present Red Belly Blockchain (RBBC), the first secure blockchain whose throughput scales to hundreds of geodistributed consensus participants. To this end, we drastically revisited Byzantine Fault Tolerant (BFT) blockchains through three contributions: (i) defining the Set Byzantine Con-sensus problem of agreeing on a superblock of all proposed blocks instead of a single block; (ii) adopting a fair leaderless design to offer censorship-resistance guaranteeing the commit of correctly requested transactions; (iii) introducing sharded verification to limit the number of signature verifications without hampering security. We evaluate RBBC on up to 1000 VMs of 3 different types, spread across 4 continents, and under attacks. Although its performance is affected by attacks, RBBC scales in that its throughput increases to hundreds of consensus nodes and achieves 30k TPS throughput and 3 second latency on 1000 VMs, hence improving by 3× both the latency and the throughput of its closest competitor.","PeriodicalId":6786,"journal":{"name":"2021 IEEE Symposium on Security and Privacy (SP)","volume":"51 1","pages":"466-483"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"81","resultStr":"{\"title\":\"Red Belly: A Secure, Fair and Scalable Open Blockchain\",\"authors\":\"Tyler Crain, Christopher Natoli, V. Gramoli\",\"doi\":\"10.1109/SP40001.2021.00087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blockchain has found applications to track ownership of digital assets. Yet, several blockchains were shown vulnerable to network attacks. It is thus crucial for companies to adopt secure blockchains before moving them to production. In this paper, we present Red Belly Blockchain (RBBC), the first secure blockchain whose throughput scales to hundreds of geodistributed consensus participants. To this end, we drastically revisited Byzantine Fault Tolerant (BFT) blockchains through three contributions: (i) defining the Set Byzantine Con-sensus problem of agreeing on a superblock of all proposed blocks instead of a single block; (ii) adopting a fair leaderless design to offer censorship-resistance guaranteeing the commit of correctly requested transactions; (iii) introducing sharded verification to limit the number of signature verifications without hampering security. We evaluate RBBC on up to 1000 VMs of 3 different types, spread across 4 continents, and under attacks. Although its performance is affected by attacks, RBBC scales in that its throughput increases to hundreds of consensus nodes and achieves 30k TPS throughput and 3 second latency on 1000 VMs, hence improving by 3× both the latency and the throughput of its closest competitor.\",\"PeriodicalId\":6786,\"journal\":{\"name\":\"2021 IEEE Symposium on Security and Privacy (SP)\",\"volume\":\"51 1\",\"pages\":\"466-483\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"81\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Symposium on Security and Privacy (SP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SP40001.2021.00087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP40001.2021.00087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Red Belly: A Secure, Fair and Scalable Open Blockchain
Blockchain has found applications to track ownership of digital assets. Yet, several blockchains were shown vulnerable to network attacks. It is thus crucial for companies to adopt secure blockchains before moving them to production. In this paper, we present Red Belly Blockchain (RBBC), the first secure blockchain whose throughput scales to hundreds of geodistributed consensus participants. To this end, we drastically revisited Byzantine Fault Tolerant (BFT) blockchains through three contributions: (i) defining the Set Byzantine Con-sensus problem of agreeing on a superblock of all proposed blocks instead of a single block; (ii) adopting a fair leaderless design to offer censorship-resistance guaranteeing the commit of correctly requested transactions; (iii) introducing sharded verification to limit the number of signature verifications without hampering security. We evaluate RBBC on up to 1000 VMs of 3 different types, spread across 4 continents, and under attacks. Although its performance is affected by attacks, RBBC scales in that its throughput increases to hundreds of consensus nodes and achieves 30k TPS throughput and 3 second latency on 1000 VMs, hence improving by 3× both the latency and the throughput of its closest competitor.