{"title":"鸡体脂肪酸百分比相关性的分布依赖性和群集调节","authors":"A. Høstmark, A. Haug","doi":"10.31579/2637-8914/025","DOIUrl":null,"url":null,"abstract":"Body fatty acids are important in health and disease. We previously observed two groups of fatty acids in breast muscle of chickens: Group 1) with relative amounts correlating negatively with %AA (20:4 n6), and Group 2) with relative amounts correlating positively with %AA. Within each of the two groups, we here found positive correlations between fatty acid percentages. Accordingly, Group 1 percentages correlated negatively with those of Group 2. With random numbers in lieu of the true values of Group 2 fatty acids, we were able to reproduce the positive correlations found with true values, if the random numbers were generated with the true ranges. In contrast, with random numbers we did not succeed in reproducing all of the negative correlations between Group 1 and Group 2 fatty acid percentages. We then observed that absolute amounts (g/kg) of fatty acids in Group 1 correlated positively and strongly (r > 0.9), suggesting a coordinated regulation of these fatty acids. Thus, Group 1 fatty acids seemed to be a cluster of fatty acids. Random number cluster percentage showed nice inverse associations with random number Group 2 fatty acid percentages, like the outcome observed with the true values. We suggest that associations between fatty acid percentages are caused by their concentration distributions, and by cluster regulation. Distribution Dependent and Cluster Regulation could be an evolutionary adaptation, where a mathematical rule is utilized to e.g. balance effects of eicosanoids/docosanoids, and possibly other metabolites.","PeriodicalId":19242,"journal":{"name":"Nutrition and Food Processing","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Distribution Dependent and Cluster Regulation of Associations between Body Fatty Acid Percentages, as observed in Chickens\",\"authors\":\"A. Høstmark, A. Haug\",\"doi\":\"10.31579/2637-8914/025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Body fatty acids are important in health and disease. We previously observed two groups of fatty acids in breast muscle of chickens: Group 1) with relative amounts correlating negatively with %AA (20:4 n6), and Group 2) with relative amounts correlating positively with %AA. Within each of the two groups, we here found positive correlations between fatty acid percentages. Accordingly, Group 1 percentages correlated negatively with those of Group 2. With random numbers in lieu of the true values of Group 2 fatty acids, we were able to reproduce the positive correlations found with true values, if the random numbers were generated with the true ranges. In contrast, with random numbers we did not succeed in reproducing all of the negative correlations between Group 1 and Group 2 fatty acid percentages. We then observed that absolute amounts (g/kg) of fatty acids in Group 1 correlated positively and strongly (r > 0.9), suggesting a coordinated regulation of these fatty acids. Thus, Group 1 fatty acids seemed to be a cluster of fatty acids. Random number cluster percentage showed nice inverse associations with random number Group 2 fatty acid percentages, like the outcome observed with the true values. We suggest that associations between fatty acid percentages are caused by their concentration distributions, and by cluster regulation. Distribution Dependent and Cluster Regulation could be an evolutionary adaptation, where a mathematical rule is utilized to e.g. balance effects of eicosanoids/docosanoids, and possibly other metabolites.\",\"PeriodicalId\":19242,\"journal\":{\"name\":\"Nutrition and Food Processing\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nutrition and Food Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31579/2637-8914/025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrition and Food Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31579/2637-8914/025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distribution Dependent and Cluster Regulation of Associations between Body Fatty Acid Percentages, as observed in Chickens
Body fatty acids are important in health and disease. We previously observed two groups of fatty acids in breast muscle of chickens: Group 1) with relative amounts correlating negatively with %AA (20:4 n6), and Group 2) with relative amounts correlating positively with %AA. Within each of the two groups, we here found positive correlations between fatty acid percentages. Accordingly, Group 1 percentages correlated negatively with those of Group 2. With random numbers in lieu of the true values of Group 2 fatty acids, we were able to reproduce the positive correlations found with true values, if the random numbers were generated with the true ranges. In contrast, with random numbers we did not succeed in reproducing all of the negative correlations between Group 1 and Group 2 fatty acid percentages. We then observed that absolute amounts (g/kg) of fatty acids in Group 1 correlated positively and strongly (r > 0.9), suggesting a coordinated regulation of these fatty acids. Thus, Group 1 fatty acids seemed to be a cluster of fatty acids. Random number cluster percentage showed nice inverse associations with random number Group 2 fatty acid percentages, like the outcome observed with the true values. We suggest that associations between fatty acid percentages are caused by their concentration distributions, and by cluster regulation. Distribution Dependent and Cluster Regulation could be an evolutionary adaptation, where a mathematical rule is utilized to e.g. balance effects of eicosanoids/docosanoids, and possibly other metabolites.