机器人心理理论与逆向心理学

Chuang Yu, Baris Serhan, M. Romeo, A. Cangelosi
{"title":"机器人心理理论与逆向心理学","authors":"Chuang Yu, Baris Serhan, M. Romeo, A. Cangelosi","doi":"10.1145/3568294.3580144","DOIUrl":null,"url":null,"abstract":"Theory of mind (ToM) corresponds to the human ability to infer other people's desires, beliefs, and intentions. Acquisition of ToM skills is crucial to obtain a natural interaction between robots and humans. A core component of ToM is the ability to attribute false beliefs. In this paper, a collaborative robot tries to assist a human partner who plays a trust-based card game against another human. The robot infers its partner's trust in the robot's decision system via reinforcement learning. Robot ToM refers to the ability to implicitly anticipate the human collaborator's strategy and inject the prediction into its optimal decision model for a better team performance. In our experiments, the robot learns when its human partner does not trust the robot and consequently gives recommendations in its optimal policy to ensure the effectiveness of team performance. The interesting finding is that the optimal robotic policy attempts to use reverse psychology on its human collaborator when trust is low. This finding will provide guidance for the study of a trustworthy robot decision model with a human partner in the loop.","PeriodicalId":36515,"journal":{"name":"ACM Transactions on Human-Robot Interaction","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robot Theory of Mind with Reverse Psychology\",\"authors\":\"Chuang Yu, Baris Serhan, M. Romeo, A. Cangelosi\",\"doi\":\"10.1145/3568294.3580144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Theory of mind (ToM) corresponds to the human ability to infer other people's desires, beliefs, and intentions. Acquisition of ToM skills is crucial to obtain a natural interaction between robots and humans. A core component of ToM is the ability to attribute false beliefs. In this paper, a collaborative robot tries to assist a human partner who plays a trust-based card game against another human. The robot infers its partner's trust in the robot's decision system via reinforcement learning. Robot ToM refers to the ability to implicitly anticipate the human collaborator's strategy and inject the prediction into its optimal decision model for a better team performance. In our experiments, the robot learns when its human partner does not trust the robot and consequently gives recommendations in its optimal policy to ensure the effectiveness of team performance. The interesting finding is that the optimal robotic policy attempts to use reverse psychology on its human collaborator when trust is low. This finding will provide guidance for the study of a trustworthy robot decision model with a human partner in the loop.\",\"PeriodicalId\":36515,\"journal\":{\"name\":\"ACM Transactions on Human-Robot Interaction\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Human-Robot Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3568294.3580144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Human-Robot Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3568294.3580144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 1

摘要

心理理论(ToM)对应于人类推断他人欲望、信仰和意图的能力。习得ToM技能对于实现机器人与人之间的自然互动至关重要。ToM的一个核心组件是对错误信念进行归因的能力。在本文中,一个协作机器人试图帮助一个人类伙伴与另一个人进行基于信任的纸牌游戏。机器人通过强化学习来推断其伙伴对机器人决策系统的信任。机器人ToM指的是能够隐式地预测人类合作者的策略,并将预测注入其最优决策模型中,以获得更好的团队绩效。在我们的实验中,机器人在人类伙伴不信任它的时候进行学习,并给出最优策略建议,以确保团队绩效的有效性。有趣的发现是,当信任度较低时,最佳机器人策略试图对人类合作者使用逆向心理。这一发现将为具有人类伙伴的可信赖机器人决策模型的研究提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robot Theory of Mind with Reverse Psychology
Theory of mind (ToM) corresponds to the human ability to infer other people's desires, beliefs, and intentions. Acquisition of ToM skills is crucial to obtain a natural interaction between robots and humans. A core component of ToM is the ability to attribute false beliefs. In this paper, a collaborative robot tries to assist a human partner who plays a trust-based card game against another human. The robot infers its partner's trust in the robot's decision system via reinforcement learning. Robot ToM refers to the ability to implicitly anticipate the human collaborator's strategy and inject the prediction into its optimal decision model for a better team performance. In our experiments, the robot learns when its human partner does not trust the robot and consequently gives recommendations in its optimal policy to ensure the effectiveness of team performance. The interesting finding is that the optimal robotic policy attempts to use reverse psychology on its human collaborator when trust is low. This finding will provide guidance for the study of a trustworthy robot decision model with a human partner in the loop.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Human-Robot Interaction
ACM Transactions on Human-Robot Interaction Computer Science-Artificial Intelligence
CiteScore
7.70
自引率
5.90%
发文量
65
期刊介绍: ACM Transactions on Human-Robot Interaction (THRI) is a prestigious Gold Open Access journal that aspires to lead the field of human-robot interaction as a top-tier, peer-reviewed, interdisciplinary publication. The journal prioritizes articles that significantly contribute to the current state of the art, enhance overall knowledge, have a broad appeal, and are accessible to a diverse audience. Submissions are expected to meet a high scholarly standard, and authors are encouraged to ensure their research is well-presented, advancing the understanding of human-robot interaction, adding cutting-edge or general insights to the field, or challenging current perspectives in this research domain. THRI warmly invites well-crafted paper submissions from a variety of disciplines, encompassing robotics, computer science, engineering, design, and the behavioral and social sciences. The scholarly articles published in THRI may cover a range of topics such as the nature of human interactions with robots and robotic technologies, methods to enhance or enable novel forms of interaction, and the societal or organizational impacts of these interactions. The editorial team is also keen on receiving proposals for special issues that focus on specific technical challenges or that apply human-robot interaction research to further areas like social computing, consumer behavior, health, and education.
期刊最新文献
Influence of Simulation and Interactivity on Human Perceptions of a Robot During Navigation Tasks Converging Measures and an Emergent Model: A Meta-Analysis of Human-Machine Trust Questionnaires Generating Pattern-Based Conventions for Predictable Planning in Human-Robot Collaboration Classification of Co-manipulation Modus with Human-Human Teams for Future Application to Human-Robot Systems Perceptions of a Robot that Interleaves Tasks for Multiple Users
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1