一些智能控制结构和专用算法综述

IF 1.3 Q4 AUTOMATION & CONTROL SYSTEMS International Journal of Automation and Control Pub Date : 2020-04-08 DOI:10.5772/intechopen.91966
Kuo-Chi Chang, Kai-Chun Chu, Yuh-Chung Lin, Jeng-Shyang Pan
{"title":"一些智能控制结构和专用算法综述","authors":"Kuo-Chi Chang, Kai-Chun Chu, Yuh-Chung Lin, Jeng-Shyang Pan","doi":"10.5772/intechopen.91966","DOIUrl":null,"url":null,"abstract":"Automatic control refers to the use of a control device to make the controlled object automatically run or keep the state unchanged without the participation of people. The guiding ideology of intelligent control is based on people’s way of thinking and ability to solve problems, in order to solve the current methods that require human intelligence. We already know that the complexity of the controlled object includes model uncertainty, high nonlinearity, distributed sensors/actuators, dynamic mutations, multiple time scales, complex information patterns, big data process, and strict characteristic indicators, etc. In addition, the complexity of the environment manifests itself in uncertainty and uncertainty of change. Based on this, various researches continue to suggest that the main methods of intelligent control can include expert control, fuzzy control, neural network control, hierarchical intelligent control, anthropomorphic intelligent control, integrated intelligent control, combined intelligent control, chaos control, wavelet theory, etc. However, it is difficult to want all the intelligent control methods in a chapter, so this chapter focuses on intelligent control based on fuzzy logic, intelligent control based on neural network, expert control and human-like intelligent control, and hierarchical intelligent control and learning control, and provide relevant and useful programming for readers to practice.","PeriodicalId":45089,"journal":{"name":"International Journal of Automation and Control","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2020-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Overview of Some Intelligent Control Structures and Dedicated Algorithms\",\"authors\":\"Kuo-Chi Chang, Kai-Chun Chu, Yuh-Chung Lin, Jeng-Shyang Pan\",\"doi\":\"10.5772/intechopen.91966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic control refers to the use of a control device to make the controlled object automatically run or keep the state unchanged without the participation of people. The guiding ideology of intelligent control is based on people’s way of thinking and ability to solve problems, in order to solve the current methods that require human intelligence. We already know that the complexity of the controlled object includes model uncertainty, high nonlinearity, distributed sensors/actuators, dynamic mutations, multiple time scales, complex information patterns, big data process, and strict characteristic indicators, etc. In addition, the complexity of the environment manifests itself in uncertainty and uncertainty of change. Based on this, various researches continue to suggest that the main methods of intelligent control can include expert control, fuzzy control, neural network control, hierarchical intelligent control, anthropomorphic intelligent control, integrated intelligent control, combined intelligent control, chaos control, wavelet theory, etc. However, it is difficult to want all the intelligent control methods in a chapter, so this chapter focuses on intelligent control based on fuzzy logic, intelligent control based on neural network, expert control and human-like intelligent control, and hierarchical intelligent control and learning control, and provide relevant and useful programming for readers to practice.\",\"PeriodicalId\":45089,\"journal\":{\"name\":\"International Journal of Automation and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automation and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.91966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automation and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.91966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 2

摘要

自动控制是指在没有人参与的情况下,利用控制装置使被控对象自动运行或保持状态不变。智能控制的指导思想是基于人的思维方式和解决问题的能力,以解决当前需要人类智能的方法。我们已经知道,被控对象的复杂性包括模型的不确定性、高度非线性、传感器/执行器的分布式、动态突变、多时间尺度、复杂的信息模式、大数据处理、严格的特征指标等。此外,环境的复杂性还表现为变化的不确定性和不确定性。基于此,各种研究不断提出智能控制的主要方法包括专家控制、模糊控制、神经网络控制、层次智能控制、拟人智能控制、集成智能控制、组合智能控制、混沌控制、小波理论等。然而,想要在一章中介绍所有的智能控制方法是很困难的,因此本章重点介绍了基于模糊逻辑的智能控制、基于神经网络的智能控制、专家控制和类人智能控制、分层智能控制和学习控制,并提供相关实用的编程供读者实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Overview of Some Intelligent Control Structures and Dedicated Algorithms
Automatic control refers to the use of a control device to make the controlled object automatically run or keep the state unchanged without the participation of people. The guiding ideology of intelligent control is based on people’s way of thinking and ability to solve problems, in order to solve the current methods that require human intelligence. We already know that the complexity of the controlled object includes model uncertainty, high nonlinearity, distributed sensors/actuators, dynamic mutations, multiple time scales, complex information patterns, big data process, and strict characteristic indicators, etc. In addition, the complexity of the environment manifests itself in uncertainty and uncertainty of change. Based on this, various researches continue to suggest that the main methods of intelligent control can include expert control, fuzzy control, neural network control, hierarchical intelligent control, anthropomorphic intelligent control, integrated intelligent control, combined intelligent control, chaos control, wavelet theory, etc. However, it is difficult to want all the intelligent control methods in a chapter, so this chapter focuses on intelligent control based on fuzzy logic, intelligent control based on neural network, expert control and human-like intelligent control, and hierarchical intelligent control and learning control, and provide relevant and useful programming for readers to practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Automation and Control
International Journal of Automation and Control AUTOMATION & CONTROL SYSTEMS-
自引率
41.70%
发文量
50
期刊介绍: IJAAC addresses the evolution and realisation of the theory, algorithms, techniques, schemes and tools for any kind of automation and control platforms including macro, micro and nano scale machineries and systems, with emphasis on implications that state-of-the-art technology choices have on both the feasibility and practicability of the intended applications. This perspective acknowledges the complexity of the automation, instrumentation and process control methods and delineates itself as an interface between the theory and practice existing in parallel over diverse spheres. Topics covered include: -Control theory and practice- Identification and modelling- Mechatronics- Application of soft computing- Real-time issues- Distributed control and remote monitoring- System integration- Fault detection and isolation (FDI)- Virtual instrumentation and control- Fieldbus technology and interfaces- Agriculture, environment, health applications- Industry, military, space applications
期刊最新文献
Power Quality Improvement and Seamless Transfer in a Grid-connected Microgrid System using H∞ Controller Machine Learning based Fault Estimation of NonLinear Descriptor Systems Observer-Based 2D Tracking Control for a Vascular Microrobot Based on the T-S Fuzzy Model Unscented Kalman filter based control strategy for wind turbine systems Event-triggered containment control for multi-agent systems with switching topology in finite-time
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1