{"title":"基于随机电弧模型的电弧炉电能质量分析","authors":"D. Grabowski, J. Walczak, M. Klimas","doi":"10.1109/EEEIC.2018.8494547","DOIUrl":null,"url":null,"abstract":"Electric arc furnaces (EAF) are commonly used in steel industry. Unfortunately, nonlinear characteristic of the arc furnace and its stochastic behavior bring about many problems, e.g. voltage flicker and waveform distortions. The AC furnaces are usually modelled using combined models which divide the phenomenon taking place in real objects into a deterministic and a stochastic or chaotic parts. The former can be expressed by a nonlinear differential equations. The paper goal was to take advantage of the earlier results, i.e. a closed form of the solution to one of the most popular nonlinear differential equations used for the AC electric arc modelling, and start research towards a complete EAC model which covers not only the deterministic but also the time-varying nature of the arc waveforms. Such a model can be helpful, among others, in solution to power quality problems in EAF supplying networks. Theoretical considerations have been illustrated by some examples and the results have been compared with measurements.","PeriodicalId":6563,"journal":{"name":"2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","volume":"131 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Electric Arc Furnace Power Quality Analysis Based on a Stochastic Arc Model\",\"authors\":\"D. Grabowski, J. Walczak, M. Klimas\",\"doi\":\"10.1109/EEEIC.2018.8494547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electric arc furnaces (EAF) are commonly used in steel industry. Unfortunately, nonlinear characteristic of the arc furnace and its stochastic behavior bring about many problems, e.g. voltage flicker and waveform distortions. The AC furnaces are usually modelled using combined models which divide the phenomenon taking place in real objects into a deterministic and a stochastic or chaotic parts. The former can be expressed by a nonlinear differential equations. The paper goal was to take advantage of the earlier results, i.e. a closed form of the solution to one of the most popular nonlinear differential equations used for the AC electric arc modelling, and start research towards a complete EAC model which covers not only the deterministic but also the time-varying nature of the arc waveforms. Such a model can be helpful, among others, in solution to power quality problems in EAF supplying networks. Theoretical considerations have been illustrated by some examples and the results have been compared with measurements.\",\"PeriodicalId\":6563,\"journal\":{\"name\":\"2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)\",\"volume\":\"131 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EEEIC.2018.8494547\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEEIC.2018.8494547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

电弧炉是钢铁工业中常用的一种设备。然而,电弧炉的非线性特性及其随机特性带来了电压闪变和波形畸变等问题。交流炉的建模通常采用组合模型,将实际物体中发生的现象分为确定性部分和随机部分或混沌部分。前者可以用非线性微分方程表示。本文的目标是利用先前的结果,即用于交流电弧建模的最流行的非线性微分方程之一的解的封闭形式,并开始研究一个完整的EAC模型,该模型不仅涵盖了电弧波形的确定性,而且涵盖了时变性质。该模型可用于解决电炉供电网络中的电能质量问题。通过算例说明了理论考虑,并与实测结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electric Arc Furnace Power Quality Analysis Based on a Stochastic Arc Model
Electric arc furnaces (EAF) are commonly used in steel industry. Unfortunately, nonlinear characteristic of the arc furnace and its stochastic behavior bring about many problems, e.g. voltage flicker and waveform distortions. The AC furnaces are usually modelled using combined models which divide the phenomenon taking place in real objects into a deterministic and a stochastic or chaotic parts. The former can be expressed by a nonlinear differential equations. The paper goal was to take advantage of the earlier results, i.e. a closed form of the solution to one of the most popular nonlinear differential equations used for the AC electric arc modelling, and start research towards a complete EAC model which covers not only the deterministic but also the time-varying nature of the arc waveforms. Such a model can be helpful, among others, in solution to power quality problems in EAF supplying networks. Theoretical considerations have been illustrated by some examples and the results have been compared with measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Future State Visualization in Power Grid Configurations of Modified SEPIC Converter with Switched Inductor Module (MSCsI) for Photovoltaic Application: Part-II Innovative Hybrid Energy Systems for Heading Towards NZEB Qualification for Existing Buildings Potential Use of Reservoirs for Mitigating Saline Intrusion in the Coastal Areas of Red River Delta Radiated Wideband IEMI: Coupling Model and Worst-Case Analysis for Smart Grid Wiring Harness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1