{"title":"使用整体终身主题模型挖掘特定方面的意见","authors":"Shuai Wang, Zhiyuan Chen, Bing Liu","doi":"10.1145/2872427.2883086","DOIUrl":null,"url":null,"abstract":"Aspect-level sentiment analysis or opinion mining consists of several core sub-tasks: aspect extraction, opinion identification, polarity classification, and separation of general and aspect-specific opinions. Various topic models have been proposed by researchers to address some of these sub-tasks. However, there is little work on modeling all of them together. In this paper, we first propose a holistic fine-grained topic model, called the JAST (Joint Aspect-based Sentiment Topic) model, that can simultaneously model all of above problems under a unified framework. To further improve it, we incorporate the idea of lifelong machine learning and propose a more advanced model, called the LAST (Lifelong Aspect-based Sentiment Topic) model. LAST automatically mines the prior knowledge of aspect, opinion, and their correspondence from other products or domains. Such knowledge is automatically extracted and incorporated into the proposed LAST model without any human involvement. Our experiments using reviews of a large number of product domains show major improvements of the proposed models over state-of-the-art baselines.","PeriodicalId":20455,"journal":{"name":"Proceedings of the 25th International Conference on World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"128","resultStr":"{\"title\":\"Mining Aspect-Specific Opinion using a Holistic Lifelong Topic Model\",\"authors\":\"Shuai Wang, Zhiyuan Chen, Bing Liu\",\"doi\":\"10.1145/2872427.2883086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aspect-level sentiment analysis or opinion mining consists of several core sub-tasks: aspect extraction, opinion identification, polarity classification, and separation of general and aspect-specific opinions. Various topic models have been proposed by researchers to address some of these sub-tasks. However, there is little work on modeling all of them together. In this paper, we first propose a holistic fine-grained topic model, called the JAST (Joint Aspect-based Sentiment Topic) model, that can simultaneously model all of above problems under a unified framework. To further improve it, we incorporate the idea of lifelong machine learning and propose a more advanced model, called the LAST (Lifelong Aspect-based Sentiment Topic) model. LAST automatically mines the prior knowledge of aspect, opinion, and their correspondence from other products or domains. Such knowledge is automatically extracted and incorporated into the proposed LAST model without any human involvement. Our experiments using reviews of a large number of product domains show major improvements of the proposed models over state-of-the-art baselines.\",\"PeriodicalId\":20455,\"journal\":{\"name\":\"Proceedings of the 25th International Conference on World Wide Web\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"128\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th International Conference on World Wide Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2872427.2883086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Conference on World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2872427.2883086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mining Aspect-Specific Opinion using a Holistic Lifelong Topic Model
Aspect-level sentiment analysis or opinion mining consists of several core sub-tasks: aspect extraction, opinion identification, polarity classification, and separation of general and aspect-specific opinions. Various topic models have been proposed by researchers to address some of these sub-tasks. However, there is little work on modeling all of them together. In this paper, we first propose a holistic fine-grained topic model, called the JAST (Joint Aspect-based Sentiment Topic) model, that can simultaneously model all of above problems under a unified framework. To further improve it, we incorporate the idea of lifelong machine learning and propose a more advanced model, called the LAST (Lifelong Aspect-based Sentiment Topic) model. LAST automatically mines the prior knowledge of aspect, opinion, and their correspondence from other products or domains. Such knowledge is automatically extracted and incorporated into the proposed LAST model without any human involvement. Our experiments using reviews of a large number of product domains show major improvements of the proposed models over state-of-the-art baselines.