{"title":"松弛剂Ba0.85Ca0.15Zr0.05Ti0.95O3无铅陶瓷的相变行为和电学性能研究","authors":"Mamta Shandilya, S. Thakur, R. Rai","doi":"10.1080/07315171.2019.1647705","DOIUrl":null,"url":null,"abstract":"Abstract Lead-free relaxor ferroelectric, Ba0.85Ca0.15Zr0.05Ti0.95O3 have been fabricated by a hydrothermal method. Single-phase X-ray diffraction patterns conforms very closely to perovskites structure and the samples have a phase with a tetragonal structure at room temperature. The FESEM image of Ba0.85Ca0.15Zr0.05Ti0.95O3 powder shows cylindrical like crystals. Small grains with average grain sizes of ∼10 ± 5 nm uniformly distributed all over the powder. The most intense diffraction rings from TEM correspond to large crystallites. A broad dielectric anomaly coupled with the dielectric maxima with increasing frequency indicates the second order diffuse phase transition in the system.","PeriodicalId":50451,"journal":{"name":"Ferroelectrics Letters Section","volume":"18 1","pages":"18 - 8"},"PeriodicalIF":1.3000,"publicationDate":"2019-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Study of phase transitional behavior and electrical properties of relaxor Ba0.85Ca0.15Zr0.05Ti0.95O3 lead free ceramic\",\"authors\":\"Mamta Shandilya, S. Thakur, R. Rai\",\"doi\":\"10.1080/07315171.2019.1647705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Lead-free relaxor ferroelectric, Ba0.85Ca0.15Zr0.05Ti0.95O3 have been fabricated by a hydrothermal method. Single-phase X-ray diffraction patterns conforms very closely to perovskites structure and the samples have a phase with a tetragonal structure at room temperature. The FESEM image of Ba0.85Ca0.15Zr0.05Ti0.95O3 powder shows cylindrical like crystals. Small grains with average grain sizes of ∼10 ± 5 nm uniformly distributed all over the powder. The most intense diffraction rings from TEM correspond to large crystallites. A broad dielectric anomaly coupled with the dielectric maxima with increasing frequency indicates the second order diffuse phase transition in the system.\",\"PeriodicalId\":50451,\"journal\":{\"name\":\"Ferroelectrics Letters Section\",\"volume\":\"18 1\",\"pages\":\"18 - 8\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ferroelectrics Letters Section\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1080/07315171.2019.1647705\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ferroelectrics Letters Section","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/07315171.2019.1647705","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Study of phase transitional behavior and electrical properties of relaxor Ba0.85Ca0.15Zr0.05Ti0.95O3 lead free ceramic
Abstract Lead-free relaxor ferroelectric, Ba0.85Ca0.15Zr0.05Ti0.95O3 have been fabricated by a hydrothermal method. Single-phase X-ray diffraction patterns conforms very closely to perovskites structure and the samples have a phase with a tetragonal structure at room temperature. The FESEM image of Ba0.85Ca0.15Zr0.05Ti0.95O3 powder shows cylindrical like crystals. Small grains with average grain sizes of ∼10 ± 5 nm uniformly distributed all over the powder. The most intense diffraction rings from TEM correspond to large crystallites. A broad dielectric anomaly coupled with the dielectric maxima with increasing frequency indicates the second order diffuse phase transition in the system.
期刊介绍:
Ferroelectrics Letters is a separately published section of the international journal Ferroelectrics. Both sections publish theoretical, experimental and applied papers on ferroelectrics and related materials, including ferroelastics, ferroelectric ferromagnetics, electrooptics, piezoelectrics, pyroelectrics, nonlinear dielectrics, polymers and liquid crystals.
Ferroelectrics Letters permits the rapid publication of important, quality, short original papers on the theory, synthesis, properties and applications of ferroelectrics and related materials.